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Abstract

This is the final report of NASA Grant NAG-I-726. The method

of Computational Singular Perturbation (CSP) for simplified kinetic-

s modeling was developed under this grant monitored by Dr. Peter

Gnoffo of NASA Langley Research Center, Hampton, VA. The grant

period is November 14, 1986 to January 31, 1993.
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1 Introduction

In the study of high speed flows at high altitudes, such as that encoun-

tered by re-entry spacecrafts, the interaction of chemical reactions and other

non-equilibrium processes in the flow field with the gas dynamics is cru-

cial. Generally speaking, problems of this level of complexity must resort

to numerical methods for solutions, using sophisticated computational fluid

dynamics (CFD) codes. The difficulties introduced by reacting gas dynamics

can be classified into three distinct headings:

I. The usually inadequate knowledge of the reaction rate coefficients in the

non-equilibrium reaction system, and _ '

II. The vastly larger number of unknowns involved in the computation and

the expected stiffness Ill of the equations, and

III. The interpretation of the detailed reacting CFD numerical results.

It is not uncommon to have to deal with reaction systems involving tens of

reactants which participate in hundreds of elementary reactions (using spec-

ulative rate coefficients) which have vastly disparate time scales. Assuming

that sufficient computing resources are available, that the most up-to-date re-

action rate coefficients have been used, we must still address item #III above:

how does one extract physical understanding from the massive amount of nu-

merical results generated by a validated reacting CFD code?

Traditionally, an important component of a theory is its formulation. By

limiting its validity on some specific domain of the parameter space, a tradi-

tional theoretician "neglects" the unessential complications and retains only

the barest mechanisms to arrive at the simplified model which nevertheless

fully mimics the behaviors of the complete full-model. In most cases, it is

the simplified model itself, rather than the detailed (analytical or numerical)

solution of the simplified model, that offers the most physical insights to the

problem under investigation. This traditional approach is distinctly different

from the modern CFD approach: retain all complications which can be over-

come by massive computing resources; just generate the numerical solutions,

then worry about what physical insights can be extracted from the solutions

later.

The research performed under this grant accepts the premise that react-

ing flows of practical interest in the future will in general be too complex or
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"untractable" for traditional analytical developments. The power of modern

computers must be exploited. However, instead of focussing solely on the

construction of numerical solutions of full-model equations, attention is also

directed to the "derivation" of the simplified model from the given full-model.

In other words, the present research aims to utilize computations to do tasks

which have traditionally been done by skilled theoreticians: to reduce an

originally complex full-model system into an approximate but otherwise e-

quivalent simplified model system. The tacit assumption is that once the

appropriate simplified model is derived, the interpretation of the detailed

numerical reacting CFD numerical results will become much easier.

The approach of the research is called computational singular perturbation

(CSP) [2] which is developed under the present grant. Dr. D. A. Goussis,

currently assistant professor at University of Patra in Greece, was a research

staff member and made significant contributions to the work reported here.

2 Goals of the Research

The traditional approach to derive simplified kinetics models uses the so-

called steady-state and partial-equilibrium approximations [3]'[4],[51,[61,[7],[8]. The

steady-state approximation is applied to certain "radicals" or "reaction inter-

mediaries," and the partial-equilibrium approximation is applied to certain

"fast" reactions. For relatively simple and therefore "tractable" reaction sys-

tems, these approximations are applied guided by experience and intuition.

The results of such analytical studies is a "reduced" reaction system. The

concentration of the radicals can be found from a set of algebraic equations

of state derived from the approximations, enabling the reduction of the num-

ber of unknowns. The simplified kinetics equations derived is no longer stiff.

Most importantly, much insight can be gain from inspecting the equations

of state and the simplified kinetics equations. Usually, once an analytical

simplified model is obtained, the following list of questions can be answered

intelligently by inspection of the results.

1. How many algebraic "equations of states" are available and what are

they?

2. How many "conservation laws" are available and what are they?
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3. What reactions are so fast that their reaction rate coefficients need not

be known accurately so long as they are sufficiently fast?

4. What reactions are so slow that they can be ignored altogether?

5. What reactions are primarily responsible for the current behavior of

the solution?

6. What is the effective stoichiometry of the reaction system?

7. Which reactants can be solved for in terms of the others from the

available equations of state?

8. What reactants can be summarily excluded from the reaction system?

9. What is the response of the reaction system to some perturbation?

Given a massively complex chemical reaction system involving N un-

knowns and R elementary processes where N and R are large numbers, the

traditional approach is not viable. The goal of the present research is to

generate the simplified model and the answers to the above questions using

numerical computations.

3 Example

Consider a simple reaction system with three species A, B and C and two

elementary reactions:

Reaction _1

A+A_B (3.1)

Reaction #2

A _ B + C (3.2)

The two unknowns can be considered the components of a column vector

y = [A,B] T. The stoichiometric vectors sr and reaction rates F _ of the

elementary reactions are expressed as follows:

sl = [-2,1,0] T, F 1 = k_(A 2-K1B), (3.3)

s2 = [-1,1,1] T, F 2 = k2(A- K2BC), (3.4)



Final Report for NASA Grant NAG-I-726

where kl, k2, K1 and K2 are rate coefficients obtained from up-to-date and

reliable databases. The governing equations can be written as:

dy
_- = slF 1 + s_F 2 (3.5)

Now suppose it is known that reaction #2 is very fast and becomes exhausted

very quickly. How does one take advantage of this observation to derive the

simplified model equations?

Obviously, when reaction #2 is exhausted, one would have:

F _ = k2(A- K2BC) _ 0 (3.6)

which is an algebraic equation of state relating A, B and C. However, it is

easy to verify that if one substitutes (3.6) back into (3.5), one would obtain

the wrong answer for the simplified model equations. The difficulty of this

simple-minded but incorrect derivation is quite subtle but is widely known.

Consequently, special ad hoc procedures are recommended by various au-

thors on how to proceed once the fast reactions of a reaction system have

been identified. A common feature of these ad hoc procedures is that the

unknowns are divided into two groups: those which can be eliminated from

the differential equation system by the use of the derived equations of state,

and those which cannot. The first group is usually called radicals or inter-

mediaries. For the example here, a knowledgeable kineticist will correctly

conclude that either A or B can be treated as radicals, while C cannot.

Normally, a chemical reaction system respects the Law of Conservation of

atomic elements. While such conservation laws are obviously automatically

satisfied by a correctly formulated model, their existence is usually identified

on physical grounds rather than on mathematical grounds. For the present

example which is hypothetical, the physical identification of such laws become

impossible. However, it can readily be verified mathematically that A + 2B-

C is the only conserved scalar for this reaction system.

We can represent (3.5) by the following alternative representation:

dy 1' 2'
d'-_-= sl,F + s2,F (3.7)

where the primed reactions are some linear combination of the original ele-

mentary reactions:
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Reaction _I'

SI*' -_ S 1 -- C,$2, F 1' -- F 1, (3.8)

Reaction #2'

s2, = s2, F 2' = F 2 + cF', (3.9)

where c is an arbitray constant. Note that this alternative representation is

exact, and that the primed reactions do not, in general, have any "physical

meanings."

The conventional steady-state approximation in essence recommends that

c be chosen such that the radical component of the effective stoichiometric

vector of the primed reaction driven solely by the slower original reactions

be zero. Hence for our example we would choose c = 2 if A is identified

as the radical (1.e. sl, = [0,--1,--2]T), while c = 1 if B is so identified

(1.e. s2, = [--1, 0, --1]T). In addition, the resulting differential equation for

the radical is discarded and is replaced by the equation of state obtained by

setting the reaction rate of the fast primed reaction to zero. For our example,

this equation of state is:

F 2'=F 2+cF 1 =0. (3.10)

Using this derived equation of state and the conservation of A + 2B - C,

a simplified model of the original reaction system is derived, consisting of a

single differential equation. As can be seen from the above derivation, the re-

sults obtained depends on the identification of the radical. In addition to the

above described steady-state approximation, a different set of slightly more

complicated ad hoc procedures are recommended for the partial-equilibrium

approximation. It can be shown that each of these procedures generates a

different analytical result, and the validity and accuracy of these results can

only be assessed empirically.

In general, it requires experience, intuition and skill in order to make the

correct derivation of the simplified models using the conventional approach.

4 The Basic Ideas of CSP

Consider a reaction system consisting of N unknowns (species, temperature

and density) and R elementary reactions. Limiting ourselves to spatially
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homogeneous problems, the governing system of ODE's can be expressed as

follows: dy

_- = g(y) (4.1)

where yand gare N-dimensional column vectors representing the unknowns

and their time rate of change, respectively. In general, the full-model g can

be expressed as the sum of R terms each representing a physically meaningful

elementary process:
R

g = _] srF_(y) (4.2)
r----1

where Sr and Fr(y) are the stoichiometric vector and the reaction rate of the

r-th elementary process, respectively. In general, N and R are different, and

for most full-model reaction systems R is usually larger than N. Equation

(4.2) is called the physical representation of g, because each additive term

can be associated with some physical meaning by the investigator.

The basic idea of CSP is to expresses g in terms of a set of N (yet to be de-

termined) linearly independent column basis vectors ai(t), (i = 1,2,..., N):

N

g = E aif' (4.3)
i=1

where fi is the "amplitude" of the i-th mode given by:

f_ -- b i • g, i = 1,2,..., N, (4.4)

and bi(t), (i=l, 2, ..., N) are row vectors which are orthonormal to ai(t):

bi.aj=6}., i,j = l,2,...,N. (4.5)

Obviously, the column basis vectors ai's are some linear combinations of the

physically meaningful stoichiometric vectors s,'s, and the mode amplitudes fi

are some consistent linearly combinations of the original elementary reaction

rates F_'s. The question asked by CSP is: how should the set of basis vectors

ai be chosen such the "fast" modes can be neglected from (4.3) after they

are exhausted?

To answer this question in general, we need to know how the mode ampli-

tudes fi evolve with time. Differentiating fi with respect to time, we obtain,
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with the assistance of (4.5), the following equation:

dfi N
a7 = Z:A f , i= 1,2,...,N,

j=l

where

(4.6)

Ati_(db|dt + b|'J)'aj" i,j= l,2,...,N. (4.7)

If the N x N real matrix A_. were diagonal, the N modes would be completely

decoupled; the amplitude of each mode would evolved according to its own

time scale which can be identified with the reciprocal of the diagonal element.

These modes can be ordered in ascending order of the magnitude of the time

scales. Assuming that all modes are the decaying type, the amplitudes of the

fast modes would decay toward zeros. At any moment of time, the simplified

chemical kinetics model can be obtained by simply neglecting the fast modes

which have become exhausted.

But in general, the matrix A_ is not diagonal. The mathematical theory of

CSP is focussed on finding basis vectors which minimizes the the off-diagonal

terms of this matrix. These CSP-derived basis vectors are used to compute

additional CSP data which can explicitly provide physical insights about the

reaction system under study.

5 Accomplishments

The CSP theory is developed incrementally throughout the grant period.

Appendix I is a reprint of the most recently published paper [91 and contains

the most complete and up-to-date summary of the theoretical developments.

We have mainly focussed on homogeneous reaction systems so that ef-

fects of diffusion are not included. A paper [101 was presented at the 1992

24th International Combustion Symposium at Sydney on the oxidation of

methanol. This full model reaction system consisted of 30 chemical species

plus temperature as unknowns and involved 173 reversible reactions. The

CSP-derived minimum reaction system consisted only 15 species plus tem-

perature. A copy of this published manuscript is included here as Appendix

II.

A paper [11] was presented at the 1992 APS Fluid Dynamics Division

Meeting dealing specifically with the effects of transverse diffusion. A full
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length paper of this work is in preparation, and a copy of the unfinished

manuscript is included here as Appendix III.

The CSP theory involves moderately abstract concepts in linear algebra

and higher mathematics. A common comment on CSP from chemical kineti-

cists is that the mathematics involved is too difficult. A full length paper

which tries to explain CSP using simple examples and actual numbers is

in preparation, and a copy of the unfinished manuscript is included here as

Appendix IV.

The following is a list of the major scientific accomplishments performed

under this grant:

Computer Code cSPgl A computer code, named CSP91, was written

by Dr. D. A. Goussis and contained a CSP Fortran subroutine library

which can be called by reacting flow codes. This code is compatible

with Chemkin [13], and uses Chemkin database format and data files.

Only minimum documentation is provided via a number of readme files.

A copy of this code has been delivered to Dr. Peter Gnoffo of NASA

Langley.

Clarification of the Conventional Approaches The reliance on experi-

ence and intuition in the conventional approaches to simplified kinetics

modelling is completely removed. In essence, CSP considers the con-

ventional approaches as guessing at the correct fast basis vectors. By

showing that the ideal basis vectors should diagonalize A_, it sets the

goal for the ensuing theoretical work. It shows explicitly that the local

eigen-vectors of the Jacobian of g will not diagonalize A_. [12]

The Refinement Procedure Using all N Basis Vectors The new idea

of CSP is not to look for basis vectors which will precisely diagonalize

A_. It proposes an iteration process via a refinement procedure. One

may begin with a reasonable guess, and the refinement procedure will

generate a better iterant. The eigen-vectors of the Jacobian of g is

always available to provide an excellent first guess.

The Refinement Procedure Using Only Fast Basis Vectors In all the

published papers, the refinement procedure requires that all N basis

vectors participate in the algorithm even though theoretically only the

fast basis vectors are of interest. In the unpublished paper presented
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in Appendix IV, a simpler and much cleaner refinement procedure is

introduced in which only the fast basis vectors are involved.

The CSP-derived Equations of State When the amplitudes of the de-

caying fast modes are sufficiently small in some pragmatic sense, they

become equations of states. One no longer needs to apply the steady-

state approximation or the partial-equilibrium approximation to derive

them--such equations of state can now be computationally derived rou-

tinely.

The CSP-derived Conservation Laws The concept of conservation laws

are generalized. In any given time epoch, reaction modes which are

too slow to be included in an approximate theory can be exploited

to yield locally valid conserved scalars. In other words, conservation

laws can now also be computationally derived, including the familiar

conservation of atomic elements.

The Radical Pointer Once CSP-derived basis vectors are available, a rad-

ical pointer can be constructed which identifies which chemical species

can be algebraically solved for in terms of the others using the available

equations of state. One no longer needs to guess or argue which chem-

ical species should be eliminated from the differential equation system.

The radical pointer specifically identify the "wrong" species for this

purpose.

The Fast Reaction Pointer In general, equations of state must be used

with great care. While they are doubtlessly valid approximate equa-

tions of state, they cannot be used blindly to manipulate the differential

equations. For example, one may not used the M available equations

of state to eliminate any M original elementary reaction rates from

the original system of differential equations. Only the "fast" original

elementary reaction rates can be eliminated, and wrong answers would

be obtained if the wrong reactions were eliminated. The theory of CSP

provides a fast reaction pointer, allowing the fast reactions be identified

computationally.

Minimum Reaction System The code CSP91 written by Dr. D. A. Gous-

sis can computationally generate from the original full-model reaction
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system a minimum reaction system which contains a much smaller num-

ber of species (and includes any species of interest specifically requested

by the investigator).

Effects on Diffusion Terms When diffusion is included in a reacting flow

problem, the coupling between fast reactions and the diffusion process

of the participants is strong [141. In general, one must find the new

form of the diffusion term, and in addition, one must also derived the

new boudnary conditions consistent with the exhaustion of fast modes.

Significant progress has been made on these issues, and the current

status of this research is reported in Appendix III.

CSP and The RNG Theory of Turbulence While our interest in de-

veloping CSP was prompted by reacting gas flow problems, the central

mathematical issue of the theory is how to deal with non-linear prob-

lems with vastly disparate time scales. The chemical kinetics problems

are characterized by fast modes which are usually decaying modes,

allowing the simple strategy of removing the modes when they have

become negligible. In the general case, one may encounter fast modes

which are highly oscillatory and lightly damped. For such "WKB"

type problems, the current CSP algorithm does not work. In fact, for

this type of non-linear problems, it is most likely that the system will

behave stochastically in the slow time scale.

During the course of the present research, the so-called RNG theory of

turbulence made its appearance in the literature. In the RNG theory,

the highly oscillatory and lightly damped modes of turbulence are for-

mally "removed" from the solution, and the collective effects of these

fast modes are emulated by an eddy viscosity. Using concepts and in-

sights gained from the CSP theory, a critique of the RNG theoryI15]

was published in 1992. This paper clarified some of the controversial

procedures used in the RNG literature, and provided an alternative

viewpoint. Most importantly, it provided an explanation for the out-

standing quantitative successes of the original RNG theory.

The Grant supported graduate students Mr. David Konopka and Ms. Xin

Zhu who did their master degree theses on CSP, and Mr. Andrew Tron who

is currently doing his Ph.D. thesis on CSP. In addition, the Grant supported
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Dr. G. A. Goussis as a research staff member who now continues his CSP

research as a faculty member of the University of Patra in Greece.

Research on CSP will continue at Princeton under a AFOSR URI grant

on aerother'mochemistry which commences in 1993.
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olulu, Hawaii, June, 1987.

S. H. Lam and D. A. Goussis; "Derivation of Simplified Multi-Step Reac-

tion Models Using Computational Singular Perturbation," Combined Meet-

ing of The Combustion Institute (Eastern Section) and the National Bureau

of Standard's Annual Conference on Fire Research, Gaithersburg, Maryland,
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S. H. Lam and X. Zhu; "The Split CSP Method for Reacting Flow Prob-
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S. H. Lam and D. A. Goussis; "Construction of Reduced Chemical Kinet-

ic Mechanism for a Methane Air Reaction System Using the CSP Method,"

presented at the Reduced Kinetic Mechanism and Asymptotic Approxima-

tions for Methane-Air Flames Workshop at UCSD, La Jolla, Ca., March,

1989.

S. H. Lam, D. A. Goussis and D. Konopka; "Time-Resolved Simplified

Chemical Kinetics Modelling Using Computational Singular Perturbation,"

AIAA 89-0575 Aerospace Sciences Meeting, Reno, Nevada, January 9-12,
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S. H. Lam and D. A. Goussis; "Reduced Chemical Kinetics for Hydro-

gen - Oxygen Reaction Systems," Proceedings of the 19th Spring Technical

Meeting, The Combustion Institute, pp. 121-127, Dearborn Michigan, April
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S. H. Lam and D. A. Goussis; "Computational Derivation of Simplified

Kinetics Models," presented at the 23rd International Conference on Com-

bustion, University of Orleans, France, July 22-27, 1990.

S. H. Lain and D. A. Goussis; "Sensitivity Analysis of Complex Chemical

Systems," presented at the 1990 Reduced Kinetic Mechanism and Asymptot-

ic Approximations for Methane-Air Flames Workshop, Cambridge, England,

July, 1990.

S. H. Lam and D. A. Goussis; "Sensitivity Analysis of Complex Simula-

tions Using Basis Vectors," presented at the 13th IMACS World Congress

on Computation and Applied Mathematics, Dublin, Irland, July 22-26, 1991.

Also available as Report #1897-MAE, Princeton University, July, 1990.

S. H. Lam; "The Effects of Fast Chemical Reactions on Mass Diffusion,"

presented at the Annual APS Division of Fluid Dynamics Meeting at Talla-

hassee, Florida, November, 1992.

Unpublished Reports

S. H. Lam; "Computational Singular Perturbation Procedure for Stiff

Equations," Mechanical and Aerospace Engineering Report No. 1697-MAE,

Princeton University, 1985.

S. H. Lam; "On Steady-State and Partial Equilibrium Approximations

for Chain Reactions," Mechanical and Aerospace Engineering Report No.

1722-MAE, Princeton University, 1985.

S. H. Lam and D. A. Goussis; "Research on Computational Singular Per-

turbation (Progress Report #1: Basic Theory," Mechanical and Aerospace

Engineering Report No. 1779(a)-MAE, Princeton University, 1987.

S. H. Lam and D. A. Goussis; "Research on Computational Singular Per-

turbation (Progress Report #2: Numerical Demonstrations)," Mechanical

and Aerospace Engineering Report No. 1779(b)-MAE, Princeton University,
1987.

S. H. Lam and D. A. Goussis; "Understanding Complex Chemical Kinet-

ics with Computational Singular Perturbation," Mechanical and Aerospace

Engineering Report No. 1799-MAE, Princeton University, 1988.
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S. H. Lam and D. A. Goussis; "Recent Developments in Simplified Ki-

netics Modelling for Large Reaction Systems," Princeton University Report

#1864-MAE, 1989.

Work in Progress

S. H. Lain; "On Reacting Flows with Diffusion and Fast Chemical Reac-

tions," MAE Report #1999, 1992. See Appendix III.

S. H. Lam and D. A. Goussis; "The CSP Method for Simplifying Kinet-

ics," MAE Report #1946, 1992. See Appendix IV.

7 Epilogue

With the support of this NASA Grant, we have been able to establish a firm

mathematical foundation for CSP. The "correctness" of the results is beyond

dispute--the numerical solutions of the full-model and the CSP-derived sim-

plified model are guaranteed to stay below a user-specified threshold theo-

retically, and confirmed by the computer code CSP91. The idea that com-

putational power can be exploited to yield physical insights is new and will

surely become more important in the future.
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Abstract

The conventional methods of simplified kinetics modeling through

the use of partial-equilibrium and quasi-steady approximations are re-

viewed and critiqued. The method of computational singular pertur-

bation (CSP) is then presented with special emphasis on the interpre-

tation of CSP data to obtain physical insights on massively complex

reaction systems. A simple example is used to demonstrate how CSP

deals with complex chemical kinetics problems without the benefits of

intuition and experience.

1 Introduction

An ideal scenario in the (near) future for the study of chemical kinetics

would be that a comprehensive, reliable and up-to-date database of vali-

dated reaction rates is readily available to any researcher interested in any

reasonable reaction system of interest. Using a suitable stiff solver, one can

routinely compute for the numerical solution of a massively complex chem-

ical kinetics system. However, the extraction of physical insights about the

*This work is supported by NASA Langley's Aerothermodynamics Branch, Space Sys-
tems Division.
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reaction system from the massive printouts is a different matter, and remains

a formidable task. Generally speaking, answers to the following questions are

highly valued:

o How can a reduced reaction system, involving a much smaller set of

chemical species and elementary reactions, be derived which can ap-

proximate the original massive reaction system both qualitatively and

quantitatively?

. How can the rate-controlling elementary reactions be identified? What

rate constants must be known accurately? What rate constants need

not be known accurately provided that they are "sufficiently large"?

o Which elementary reactions can be considered fast reactions in the time

interval of interest so that appropriate approximations can be applied

to obtain useful approximate algebraic relations between the species?

. Which chemical species can be considered as "intermediaries" or "rad-

icals?" in the time interval of interest so that their concentrations can

be obtained from these approximate algebraic relations?

In the present paper, we shall call approximate algebraic relations be-

tween the species "equations of state." In addition, we shall use the word

"radical" to connote a special meaning in the CSP context instead of its

normal chemical structure context. An operational definition for a CSP rad-

ical based on its mathematical role in the CSP theory will be given later.

In most cases, a CSP radical will be found to be a chemical radical, and

vice versa, but not always. To avoid confusion, we shall not use the term

"intermediaries" altogether.

Item #1 is important pragmatically because computational cost is a

strong function of the number of chemical species. Questions in item #2

needs no justification; one can claim insights on the reaction system only if

these questions can be satisfactorily answered. The conventional methodolo-

gy deals with items #3 and #4 first, mainly by guessing based on experience

and intuition. Some talented investigators simply know which reactions are

fast and which chemical species are radicals under what conditions for certain

reaction systems (Peters, 1985, 1991; Peters and Wilhams, 1987; Chelliah

and Williams, 1990; Bilger et. al. 1990, 1991). For the less gifted, data from
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numerical solutions of the full kinetics equations can be used to provide hints

in the identifications. Once the fast reactions and the radicals are correctly

identified, standard techniques are available to obtain answers to questions

in items #1 and #2.

The method of computational singular perturbation (CSP) (Lam, 1985;

Lam et. al., 1988a, 1988b, 1989, 1991a, 1991b; Goussis et. al., 1990, 1992)

provides a progarmmable mathematical algorithm to proceed routinely with-

out the benefits of experience and intuition. It can be used to verified the

validity of simplified models derived by ad hoc methods, and it can be used

to deal with massively complex problems beyond the reach of such methods.

Physical understanding of the reaction system under investigation can easily

be extracted from the CSP data generated.

2 Statement of the Problem

Consider a reaction system of N unknowns 1 denoted by the column state

vector y = [yl, y2,..., yN]T. The governing system of ODE is:

where

dy

d'_- = g(y) (1)

R

g(y) -- y_ s_F_(Y), (2)
r=l

R is the number of elementary reactions being included in the reaction sys-

tem, s, and F'(y) are the stoichiometric vector and the reaction rate of the

r-th elementary reactions, respectively. The N-dimensional column vector g

is the overall reaction rate vector, and can be interpreted as the "velocity

vector" of y in the N-dimensional y-space. For a massively complex prob-

lem, N and R can be large numbers, and the accuracy or reliability of the

available rate constants is usually less than ideal. Assuming that adequate

computing power is available, the computation of the numerical solution of

(1) is not an issue. The challenge is to obtain answers to questions in items

#1 and #2 in §1.

IThe N-dimensional column vector may include temperature, total density, etc. in

addition to chemical species
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As previously indicated, the conventional method relies completely on

the skill of the investigator to identify the fast reactions and the radicals.

Once the identifications are made, the subsequent theoretical development

proceeds relatively routinely. The interested reader is referred to Appendix B

of Williams (1985) for a detailed exposition of the conventional methodology.

2.1 The Conventional Methodology by Example

We shall use a simple hypothetical reaction system to demonstrate the con-

ventional methodology. Let the state vector be y = [A, B, C] T where A and

B are chemical concentrations and C is temperature. The reaction system

consists of two elementary reactions:

reaction#l : A + A _ B, (3a)

reaction#2: A _ B. (3b)

The stoichiometric vectors and the reaction rates are:

sl = [-2, 1, AH,] r, F'=kl(A2-K1B),

s2 = [-1, 1, AH2] T, F2=k2(A-K2B).

(4a)

(45)

where the reaction rate coefficients kl, k2 and the equilibrium constants K1, K2

are known and for the sake of simplicity their dependence on C is assumed

negligible. The heat of reaction (in the proper unit) for the two reactions are

denoted by AH1 and AH2, respectively.

The system of ODE is:

dy = saF1 + s2F2 (5)
dt

which can be written out as follows:

dA
- 2F 1 - F _,

dt
dB

= F 1 +F 2
dt

dC
= AH1F 1 +AH2F 2.

dt

(6a)

(6b)

(6c)
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The initial conditions, A(0), B(0) and C(0), are given. It can easily be

shown that as t ---* c¢, A _ KI/K2 and B --* K1/I(_. Normalizing the

unknowns intelligently, we have y. = [A., B., c.]T:

A. = AK2/K1, (7a)

B, = BK_/IQ, (7b)

C. = CK2/(AH2K,). (7c)

The system of ODE for A., B. and C. is:

dA. - 2-_K,k_(A2. - B.)- k2(A. - B.),
_ --- Ix2

dB.
-- Kakl(A2. - B.) + K2k2(A. - B.),

dt

dC. AH1

g-'zw"2glki(A_'2_n - B.) + ks(A. - B.).dt

(8a)

(8b)

(8c)

The initial conditions are:

A.(O) = A(O)K2/Ka, (9a)

B.(O) = B(O)K_/K,, (9b)

C.(O) = C(O)K2/(AH2K_). (9c)

As t ---* o0, we have A. --* 1 and B. ---* 1.

Because this reaction system is a hypothetical one, the concept of con-

servation of atomic species cannot be applied--we do not know what atomic

species are involved. However, it can easily be verified mathematically that:

(AH_ - AH2)A + (AH1 -- 2AH2)B + C = Constant (10)

is an exact "integral of motion" valid for all time, and can be physically

interpreted as a statement of conservation of total energy.

For this simple example, if the "speeds" of the two reactions are competi-

tive, there is no simplification available and little or no general statement can

be made. However, when one reaction is much faster--in some sense--than

the other, then certain mathematical simplifications are available and certain

useful general statements can be made. Intuitively, we expect a rapid tran-

sient period in which the fast reaction would dominate, followed by a slower
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evolutionary period in which the slow reaction would be contvollin 9. In gen-

eral, we expect to be able to neglect some of the slower reactions in the rapid

transient period. However, it is well known that the handling of the nearly

exhausted fast reactions in the slow evolutionary period requires considerable

care---it suffices to say here that they cannot be summarily neglected.

2.2

In the rapid transient period, the fast reaction #1 dominates.

slow reaction #2 can be neglected to yield the simplified model:

The Case of reaction :_1 being faster [ K-_-_kXKlkl << 1)

Hence, the

d--i- _ - K, kl(A2o- B.), (lla)

dB.
,_ IQkx(A2.- B.), (llb)

dt

dC___. ._ AHxK----7-7_ K,k_(A2 ._ - B.). (11c)

with (9a), (9b) and (9c) serving as the initial conditions. It is easy to show

that in addition to (10), the following

K2A. + 2B. ,_ (A(0) + 2B(0)) (12)

is approximately "conserved" (remains constant) during this period.

At the end of this period, the fast reaction #1 will have become "ex-

hausted," and A. and B. will be approximately related by B. _ A. _. In the

slow evolutionary period which follows, an approximate equation of state is

obtained by setting F a to zero. This is called the partial-equilibrium approx-

imation and a special follow-up procedure is recommended. First, one of

the participants of reaction #1 is somehow declared a radical. If B. is so

declared, (8b) is used to eliminate the contribution from reaction #1 (i.e.

Klkl(A2. - B.)) from the rest of the equations. Then, the approximate e-

quation of state is differentiated with respect to time and used to eliminate

dB,/dt. The following simplified model is obtained:

B. A. (13a)

dA. K:k2 (A.- B.), (13b)
d-----_ _ K2+4A.
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dC. AH1 .K2 + 2A. k A.
[1 AH2 (K2 +4A. )] 2( - B.). (13c)---7-

It can easily be verified that the same answer is obtained (in contrast to

results in §2.3.2 later) if A. is chosen as a radical. It is important to note

that (13b) and (13c) are not obtained by substituting (13a) into (8a) and

(8c). In fact, (13a) must never be used in (8a), (Sb) or (8c). The initial

conditions can be found from B. _ A. 2 and (12):

K2 _ 8(A(0) + 2B(0))
A.(0+) _ -T[_I + K1

1] (14)

with B.(0+) and C,(0+) given by (13a) and (10). Note that k_ does not

appear at all in (13a), (13b) or (13c), hence its value must be unimportant

provided that it is "sufficiently large." In this time period, (13a), (13b) and

(13c) together behave as a "one-step" reaction with an effective stoichiomet-

tic vector and an effective reaction rate, and generate approximate solutions

which satisfy (10) exactly.

2.3 The Case of reaction being faster << 1)
K2k2

In the rapid transient period, reaction _1 is neglected to yield the simplified
model:

dA.

dt (15a)

dB.
dt (15b)

dC.
dt (15c)

again with (9a), (gb) and (9c) serving as the initial conditions. It is easy to
show that

K2A. + B. ,_ (A(0) + B(0)) (16)

is approximately conserved (remains constant) during this period.

At the end of this period, A. and B. will be approximately related by

B. _ A.. For this case, we shall present both the the partial-equilibrium

approximation and the quasi-steady approximation in the slow evolutionary

period. We shall see that they produce different answers.

,._ -k2(A.- B.),

,-_ K2k2(A. - B.),

k2(A. - B.).
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2.3.1 The Partial-Equilibrium Approximation

In the slow evolutionary period, we can proceed as before by assuming el-

ementary reaction #2 to be in partial-equilibrium. Using the same recom-

mended procedure, we obtain the following simplified model:

B, _ A.,

dA. K1 kl
--(B. - A=.),

dt 1 + K2

dC, .K2 + 2 AH1"_ ._ 1-_= 7 _ -_-_= ] ( B. - A 2,).

(17a)

(17b)

07c)

with initial conditions:

K_(A(O) + B(0))

A.(0+) _ K,(1 + K2) (lS)

with B.(0+) and C.(0+) given by (17a) and (10). It is emphasized again that

(17b) and (17c) are not obtained by substituting (17a)into (8b) and (8c).

It can be shown that the partial-equilibrium approximation above can be

formally justified when Klka << K2k2 and A.(0) = O(1), with no restriction

on the magnitude of K2, and the resulting approximate solutions satisfy (10)

exactly.

2.3.2 The Quasi-Steady Approximation

Alternatively, we can declare either the species /3, or A, to be a radical

in this period. The quasi-steady approximation neglects the time derivative

term from the ODE of the radical to yield an approximate equation of state.

If B. is so declared, the approximate equation of state obtained from (Sb)

is used to simplify (Sa) and (8c). The resulting set of equations (without

(8b)) is then augmented by the approximate equation of state to yield the

simplified model. We obtain:

B. _ A.,

dm._-" (B. - A2.),

A H1 Kl kl

ddC* _ [1 _-H-_2]/-_-2 (B.- A2.).

(19a)

(19b)

(19c)
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with initial condition (18). Note that (19b) and (19c) agree with (17b) and

(17c) and satisfy (10) only when/(2 >> 1. If Ks << 1, then A. should have

been declared a radical instead, and a different result valid only in this limit

is obtained. If K2 is of O(1), then the quasi-steady approximation is simply

incorrect--while the partial-equilibrium approximation is valid for all K2.

Again, the value of ks does not appear in the simplified model in the slow

evolutionary period. The inference is that its value is unimportant provided

that it is sufficiently large.

2.4 Comments on Conventional Asymptotics

The above example prompts the following questions and observations:

° Exact algebraic "conservation laws" such as conservation of atomic

species and conservation of energy frequently exist in chemical kinetics

problems. In the above example, (10) is such a conservation law. Can

such conservation laws, when they exist, be mathematically identified

and derived?

2. In the rapid transient period, additional temporary approximate con-

servation laws may exist. In the above example, (12) and (16) are

temporary approximate conservation laws valid for the respective cas-

es. Can such temporary approximate conservation laws, when they

exist, also be mathematically derived?

3. When a fast reaction exhausts itself, its net reaction rate is not neg-

ligible in general from the governing equations. For example, when

reaction #1 is the faster reaction, the exhausted F 1 is not zero in the

slow evolutionary period but is, to "leading order," given by:

(Ks +
2,_ K2k2(A. - B.), (2Oh)

Klk,(A. - B.) --, (g2 +
or

FI ---* K1 +2A 2 (20b)
K1 +-_-_F,

which can be derived by comparing (8a) with (135). In other words,

when a fast elementary reaction is exhausted, its net reaction rate may

be competitive with the slower reactions.
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In any slow evolutionary period, the temporary approximate conser-

vation laws valid in the previous periods are replaced by approximate

equations of state obtained by applying the partial-equilibrium or the

quasi-steady approximation. In our example, (13a), (17a) and (19a) are

such equations of state for the respective cases. Can these equations of

state be mathematically derived? How is (13a) related to (20b)?

In a slow evolutionary period, the values of the exhausted

rate constants are not important provided that they are

In our example, the fastest rate coefficient (either kl or

appear in the simplified models when M = 1. From the

point of view, their absence means the simplified model

"stiff" (Aiken, 1985).

fast reaction

fast enough.

k2) does not

computation

is no longer

To get started on the conventional method, one must somehow decide

that certain reactions are faster than others based on some vague, in-

tuitive judgment. Unlike linear problems, the "speed" of a "reaction

mode" in a non-linear problem can depend strongly on the state of the

system. For example, even if l(2ks >> Klkl, reaction #1 can still

dominate reaction #2 initially provided that A.(0) is sufficiently large.

Since we are clearly interested in non-linear problems, a mathematical

criterion for the identification of fast reactions is very much needed.

Even after the fast reactions have somehow been identified, there is

still the question on whether the partial-equilibrium or the quasi-steady

approximation should be used to generate the approximate equations

of state, and which species--radicals--can be eliminated by using these

algebraic equations.

In Williams' book (1985), a radical is described as a chemical species

which is "neither initial reactants nor principal products," a description

too vague to be useful. In §2.3, we saw that whether A. or/5. could

justifiably be declared a radical depends on the magnitude of Ks, and

that when Ks = O(1) the quasi-steady approximation is simply wrong.

We shall adopt a pragmatic but precise definition for a radical in the

CSP context: a chemical species is a CSP-vadical if its ODE can be

replaced by an approzimate equation of state. For the moment, we
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10.

11.

12.

shall leave the questions of how to identify the radical(s) and how to

solve for them from CSP-derived equations of state until the concepts

of "radical pointer" and "radical correction" are introduced later.

We emphasize here again that the approximate equations of state ob-

tained from the partial-equilibrium approximation must never be used

directly in the original governing equations--the so-called recommend-

ed procedure must be followed. However, the approximate equations

of state obtained from the quasi-steady approximation may be used

more freely, but the validity of the results is more restricted. In fact,

the quasi-steady approximation can be viewed as an additional ad hoc

restriction imposed on the results of an appropriately applied partial-

equilibrium approximation.

Conventional asymptotics assumes that the investigator is not only ca-

pable of non-dimensionalizing the variables intelligently, but also com-

petent to take advantage of the presence of large or small parameter(s)

in the resulting formulation. Can a theoretical structure be developed

such that intelligent non-dimensionalization is not required?

In general, the conventional "magnitude" of a dimensional vector y

computed using the standard inner product may not make physical

sense. In the above example, [[Y[[2 = ( A2 + B2 + C2) 1/_ makes no

physical sense at all. In the language of mathematics, the "norm" of

the vector space of y needs to be defined. Hence if intelligent non-

dimensionalization is not assumed, the concept of a "good approxima-

tion" needs to be explicitly clarified.

3 The Goal and the Idea of CSP

The conventional method is only viable for relatively simple problems for

which adequate amount of experience and intuition have been accumulat-

ed, and that the algebra involved is manageable. For massively complex

problems with large values of N and R, a better method is clearly needed.
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3.1 The Goal

The goal of CSP is to computationally derive time-resolved simplified models

for massively complex chemical systems assuming that the appropriate reac-

tion rate database is available. The novel feature of CSP is that the power

of the modern computer is exploited not only to construct the numerical

solutions, but also to derive the approximate equations.

The output of CSP is a set of numbers called the CSP data. An essential

attribute of CSP data is that it must be easy to interpret. Answers to

questions such as:

• how many approximate equations of state are available and how can

they be derived?

• which species can be considered radicals--in the CSP context--so that

they can be computed from these equations of state?

• which elementary reactions are controlling the reaction rate of the sys-

tem? and

• what is the minimum reduced reaction system that will generate an

approximate solution with a user-specified accuracy?

and others will be provided by the CSP data.

3.2 The Idea

The physical problem is completely specified by g(y), a non-linear function

of y obtained by summing all the physical processes which contribute to the

time rate of change of y. The question is: is there a better representation

than the physical representation?

A representation is said to be a physical representation when the theoreti-

cian formulating the problem can explain and interpret each term physically.

Equation (2) is such a representation because as written each term represents
the contribution of each of the R reactions included in the full model. Must

we always write g in this particular form? Since g is a N-dimensional vector,

it can always be expressed in terms of a set of arbitrarily chosen N linearly
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independent column basis vectors, ai, i = 1, 2,..., N. When some other set

of basis vectors is used, g has an alternative representation:

N

g = __, alf i (21)
i=1

where fi, called the amplitude of the i-th mode, is given by:

R

fi(y)=_b i®g=_B_F,-, i=l,2,...,N, (22)

where

B_-b i®s_, i=l,2,...,N, r=l,2,...,R, (23)

and (S) is the dot product operator of the N-dimensional vector space. When

properly normalized, fi can also be considered as a "progress variable" for

the i-th mode. The set of N row vectors b i are the inverses of ai; together

they satisfy the following orthonormal condition:

bi®aj=_, i,j=l,2,...,N. (24)

Note that once the set ai is chosen, the associated set b i is straightforwardly

computed. Note also that B_ is not necessarily dimensionless unless deliber-

ately made so.

In our example, we have N = 3. The physical representation chooses (by

default) the following column basis vectors:

al = sl, (25a)

a2 = s2, (25b)

a3- sa-[0, 0, 1] T. (25c)

where we have added s3 to form a complete set. Any vector which is linearly

independent of al and a: may also be used. The associated row basis vectors

are obtained by solving (24):

b a = [-1, -1, 0], (26a)

b2 = [1, 2, 0], (26b)

b 3 = [AH, - AH2, AH1 - 2AH:, 1]. (26c)
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We can readily verify that:

f = b l®g=F x. (27a)

f2 = b 2®g=F 2. (27b)

f3 = b 3®g=F 3=0. (27c)

The CSP idea is very simple: instead of using the physically meaningful

stoichiometric vectors as the default basis vectors, let's exploit the theoreti-

cians' prerogative of trying different alternatives--may be something else

works better.

3.3 Same Problem, Different Basis Vectors

We shall rework the first case of our example using dimensional formulation.

Instead of the physically meaningful stoichiometric vectors, we shall use,

without comments at this point, the following set of basis vectors:

a, = [-2, 1, AYl]r=s,, (2Sa)
1

a2 - K, +4A [K''2A'(IQ +4A)AH2-(K_ + 2A)AH_]T, (285)

-3 = [0, 0, 11T. (2Sc)

The following row vectors are their inverses and together they satisfy (24):

1

b 1 - KI+4A[-2A, KI, 0],

52 = [1, 2, 01,

b 3 = [AH_-AH2, AHa-2AH2, 1].

(29a)

(29b)

(29c)

The amplitudes of the modes are:

fl = bl ® g = F1 + K1 -["2AF2 ' (30a)
K1 + 4A

f2 = b 2®g=F 2, (305)

f3 = b 3®g=F 3=0. (30c)

In terms of these basis vectors, the original reaction system becomes:

dy : alfl -}- a2f2 + a3f3 (31)
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We can rewrite (31) in long-hand notation as follows: _

dA 2 f 1 + K1 -2 (32a)
dt - K1 + 4A f '

dB 2A
= fa + f2 (32b)

dt K_ + 4A '

K1 2A
-- +_--_)AHx]f . (32c)dCdt = [Agx]f' + [AH2 -- (_xx +

Taking the inner product of b i with (31), we obtain:

1 d 2

IQ + 4A_[-A + IQB] = fl, (33a)

d f2
_-[A + 2B] = , (335)

d[(AHI - AH2)A + (AH_ - 2AH2)B + C] = f3. (33c)

We shall assume for the moment that somehow the modes have been ordered

in descending speed--mode #1 is faster than mode #2. This is physically

equivalent to saying that F 1 is estimated to be faster than F 2. Reaction rate

f3 of mode #3 is, for this problem, identically zero.

3.3.1 Exact Conservation Law

Whenever the amplitude of a slow mode is considered "negligible," it can be

summarily neglected. Since for this problem f3 = 0, mode #3 is always neg-

ligible, (33c) recovers (10), the conservation law for energy obtained earlier.

However, a dormant mode does not always yield a conservation law. See §7.2
later.

3.3.2 The Rapid Transient Period

In the rapid transient period, we assume that the dominant mode is fl, while

f2 and f3 are negligible in comparison. 3 The simplified model is:

dy
-_- _ alf 1. (34)

_Compare them with (6a), (6b) and (6c).
3A slower mode may not necessarily be negligible in this period; if it is not, it must, be

kept.
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Neglecting the right-hand side of (33b) and (33c), we recover (12) and (10),

the temporary and permanent conservation laws obtained earlier. The so-

lution of (34) automatically satisfies these constraints. As time progresses,

mode #1 decays rapidly and becomes exhausted as f2 __, 0, and y approaches

a fixed point.

3.3.3 The Slow Evolutionary Period

In the slow evolutionary period, (12) ceases to be valid, but the exhausted

mode #1 replaces it with a new approximate equation of state:

R

fa(y) = _ B_F"(y) _ 0, (35a)

If1 + 2A 2

= Fa+Kx+TA F _0' (35b)

which is the counterpart of (13a), and agrees with it in the [FI[ >> [F 2]

limit. However, unlike (13a), which we emphasized must never be substituted

directly into the original governing equations, (35a) needs no such admonition

and can be so used freely. Using it in (31), we obtain the simplified model

for this period:

dy _ a2f2" (36)
dt

Solution of (36) automatically satisfies (35a) if it is satisfied initially. No

decision on which species should be eliminated (i.e. considered as a radical)

was needed so far. All results obtained can be shown to be consistent with

the conventional method in the asymptotic limit of reaction #1 being much

faster than reaction #2.

3.3.4 Response to a Slow Third Reaction

For our simple example with only two reactions and three unknowns, the

reaction system reaches its steady state after both modes #1 and #2 are

exhausted. What happens if there is a third reaction? Denote the stoichio-

metric vector and reaction rate of the third reaction by s3 and F 3 respectively.

In addition, assume that the three stoichiometric vectors are linearly inde-

pendent, and that IF1[ >> IF2[ >> IF3[ so that the added reaction is the

slowest.
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Using the same basis vectors in §3.3, we can proceed as before. The main

impact of this complication is that fi = b i ®g now contain contribution from

F 3. After mode #2 is exhausted, a even slower mode #3 will take over. One

can easily verify that the simplified model for this period is:

dy
d-'-/_ a3f3" (37)

Note that in this time period, the response of A and B to the slow third

reaction is negligible; only C responds significantly.

3.4 The Obvious Questions

It can be shown that the three simplified models (34), (36) and (37) dis-

played above are the leading-order approximations in the asymptotic limit of

[FXl >> IF21 >> IF31 for the indicated time periods, as obtained earher in

§2.2. Hence_ the alternative representation of g using the special set of basis

vectors ((28a), (28b) and (28c))is clearly a good idea in this limit.

It can easily be verified that (28a), (28b) and (28c) are the right eigen-

vectors of the Jacobian of g in the limit of kiK1 >> k2I(2. Why do these

special basis vectors allows us to summarily neglect the exhausted fast modes,

while the same casualness would not be tolerated previously? What is the

relationship between the conventional methods and the eigen-vectors of the

Jacobian? How does one know that the basis vectors which worked well for

one set of initial conditions will work for a different set of initial conditions?

What happens when k_K_/klK1 is only moderately small?

Additional questions are: How does one extract physically interesting

information from these basis vectors? Which species can be considered a

radical? How can the accuracy of these models be improved? How can the

whole procedure be generalized to deal with a massively complex problem?

4 The Ideal Basis Vectors

Given any set of N linearly independent basis vectors, one can always de-

compose the N-dimensional vector g into N additive components or modes.

Most investigators use the physically meaningful stoichiometric vectors as

basis vectors by default. When the set used is non-ideal, the speed ranking
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of the modes is unclear, and the residual net reaction rate of an exhausted

fast reaction mode can not be neglected in general, and must be treated with

great care. We have seen in the above example that the use of an intelligently

chosen alternative set of basis vectors can make a difference. A good set of

basis vectors not only should order the modes according to their speed, but

also guarantee that the residual net reaction rate of an exhausted mode be

negligible.

To find out how the amplitude of each mode evolves with time, we differ-

entiate (1) with respect to time to obtain:

dg_
dt - J ® g (38)

where

j = 0.__gg= N × N Jacobian matrix of g with respect to y. (39)
0y

Since the solution y(t) and therefore J(t) are both known functions of time,

(38) can be considered a linear ODE (with known time-dependent coeffi-

cients) for g. Taking the inner product of b i with (38) and using (21), we

obtain:

dfi N

--_= __,A_.f j, i= l,2,...,N, (40)
j=l

where
db i

A_ = [--_-+ bi ® J] ® aj, i,j=l,2,...,N. (41)

A set of basis vectors a_(t) is said to be ideal if (i) the inverse row vectors

bi(t) can be accurately computed from (24) for all time interval of interest,

(ii) A_(t) is diagonal, and (iii) the diagonal elements of A_.(t) are ordered in

descending magnitudes. For linear problems where J is a constant matrix,

the ideal basis vectors would be the (constant) ordered eigen-vectors of J.

For non-linear problems, the eigen-vectors of J are time-dependent, and they

do not diagonalize A_..

5 The CSP Refinement of Basis Vectors

The method of CSP does not attempt to find the ideal set of basis vectors--

even when g is linear. Instead, it assumes that, at any moment in time, a
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trial set of ordered basis vectors is somehow available, that the first M fastest

modes are exhausted as measured by some criterion (to be specified later),

and generates from this trial set a new refined set of basis vectors, a_ and

bio, i = 1,2,..., N using a two-step refinement procedure (Lam and Goussis,

1991a). When recursively applied, the refinement procedure successively

weakens the coupling between the fast modes and the slow modes.

The step #1 refinement is:

N

bT(M ) - bin+ _ pT(M)b J, m=l,2,...,M, (42a)

a3(M)

J=M+I

M

------ag - _ a,p3(M),
n=l

J = M + 1,...,N. (42b)

The step #2 refinement is:

boI(M)

M

-- b'- _ q_(M)b"o(M), I = M+ 1,...,N, (43a)
n=l

N

a°(M) - am+ _ a°j(M)q_(M), m=l,2,...,M. (43b)
J=M+I

The matrices py(M) and q_(M) above are defined by:

M

py(M) - _r_(M)A_.,
n=l

M

qS(M) = y_ J ,_A_rm(M),
tt=l

m = 1,2,...,M,

m = 1,2,...,M,

J=M+I,...,N, (44a)

J=M+I,...,N, (44b)

and r_(M) is the inverse of A_,(M):

M M

r_'(M)A_(M) = _ h_(M)rk(M) = _,
k=l k=l

n,m = 1,2,...,M. (45)

The refinement procedure is readily programmable, and the refined basis

vectors after each step satisfy the orthonormal relations, (24). It is essentially

a generalization of the so-called "power method" for computing eigen-vectors,

and produces a block diagonal A_. when converged.
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The amplitude of the m-th fast mode satisfies the following differential

equation (Lain and Goussis, 1991a):

df" M
- _A_(f"'- f_o), m = 1,2,...,M, (46a)

dt ,_=1

where
N

-- y_ p_,fJ, m = 1,2,...,M. (46b)
J=M+I

- b_'®g=f'-J_, m=l,2,...,m. (46c)

Note that f_ is some linear combination of the trial slow mode amplitudes.

Solving for f_ from (46c), we obtain:

f_=fm-f_"=(bm-b_o)Gg , m = 1,2,...,M,

which shows clearly that f_ is proportional to the change of b TM to b_ as a

consequence of the step #1 refinement procedure. In general, f_, which is

computed using the trial set of basis vectors, can not be considered "small."

Let r(M) denote the magnitude of the time scale of the slowest of the

fast modes. Let r(M + 1) denote the magnitude of the currently active time

scale. Theoretically, they can be estimated by the M-th and (M + 1)-th

eigen-values of J. In the limit of small r(M)/r(M + 1)--large time scale

separation--the formal asymptotic solution of (46a) is:

fm = ]_+f_,_+..., m=l,2,...,M, (47a)

f',_oo =- r,m( M , m = 1,2,...,M. (47b)
n=l

The order of magnitude of fo,_oo can be estimated by:

f_,_oo _ O(fo_r(M)/r(M + 1)), m = 1,2,...,M. (48)

Assuming that r(U + 1) >> r(U), the order of magnitude of f',_oo is now

small in comparison to ]o_--i. e. it is a "higher order" term. We have

adopted the notation that superscript or subscript o indicates a variable

evaluated with refined basis vectors. The above derivation can be found in

Lam and Goussis (1991a).

Maas and Pope (1992) recognizes the importance of the eigen-vectors

of J, but recommends the use of its Schur vectors (Noble, 1988)--which

transform ff into a lower-triangular form--as basis vectors. The advantage

of Schur vectors for dealing with dimensional vectors is not clear.
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5.1 The Trial Set of Basis Vectors

To get started, CSP needs to have a trial set of basis vectors. A number of

options are available.

For sufficiently simple problems, one may wish to proceed analytically.

N linearly independent stoichiometric vectors chosen from the reactions ac-

tually included in the full model (with supplementary basis vectors added as

required) may be used as the default trial basis vectors. Educated guesses

are then needed to establish the speed ranking of the modes.

A fool-proof procedure is to compute for the eigen-vectors of J at t = 0

and use them as time-independent trial basis vectors for t _> 0. The recip-

rocal of the eigen-values, denoted by r(i), is an approximate measure of the

characteristic time scales of the modes. We shall assume that the r(i)'s are

essentially real and are ordered in ascending magnitudes.

When the refinement process is performed numerically on a computer, the

refined basis vectors used in the previous time-step can be used as the trial

basis vectors for the new time-step. Under this strategy, the initial choice of
trial basis vectors at t = 0 is not critical.

5.2 The Number of Exhausted Modes

The refinement procedure requires the knowledge of M, the number of ex-

hausted modes. In general, none of the fast modes are negligible at t = 0

(i. e. M = 0). As time progresses, the faster modes will eventually decay and

become exhausted (i. e. f_ ---, f_',oo). The number of exhausted fast modes,

M(t), is determined by requiring that their contributions to g (see (54) and

(55a) later) over the next time interval of O(r(M + 1)) are negligible:

la_,f_r(M)l < Y_ro_, m=l,2,...M, (49a)

la_f_,ccr(M+ 1)l < y_r,o_, m = 1,2,...,M, (495)

where y_,°_ is a dimensional colun'm vector representing a user-specified

threshold of absolute error allowed, and the vector inequality is individually

enforced for every components of the vector. If one relaxes the requirement

that the accuracy threshold for each component ofy be individually enforced,

then the following are acceptable alternatives to (49a) and (49b):

]f_o] < 0([ b_®y''°r Ir(M) ), m=l,2,...,M. (49c)
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If_,_oo[ < o(lb°" Ir(M+l) )' m=l,2,...,M. (49d)

Either of the above exhaustion criterion can readily be implemented compu-

tationally. The value of r(M + 1) can be estimated by the current integration

step-size selected by any automatic (explicit) ODE integration package. Note
that the value of M need not be a monotonic function of time.

Actually, the exhaustion criterion for the so-called CSP radicals defined

in §6.4 can be made more lenient when the so-called radical correction (to

be discussed in §6.5 later) is applied. A full discussion of this subtle point,

however, is beyond the scope of this paper.

For most problems, the desired time resolution At is usually known. If

At > r(M), (50)

then the M fastest modes must be nearly exhausted in the At time scale

of interest. If we are not interested in the details of what happens in the

next r(M) seconds, we may use the simplified model with a non-zero value

for M starting at t _ 0, provided that we also adjust the initial conditions

appropriately as demonstrated in (14) and (18). See §6.5 later.

5.3 The Refinement Process

The CSP refinement procedure consists of the following two steps.

. Refinement of the fast row vectors using (42a) and the slow column

vectors using (42b). This step depresses the magnitude of the upper-

right block of A_, (m = 1,...,M, K = M + 1,...,N), by the factor

T(M)/r(M + 1), and thus weakens the coupling of the fast mode am-

plitudes from the slow.

2. Refinement of the slow row vectors using (43a) and the fast column

vectors using (43b). This step depresses the magnitude of the lower-

left block of A_, (K = M + 1,...,N, m = 1,...,M), by the factor

r(M)/r(M + 1), and thus weakens the coupling of the slow mode am-

plitudes from the fast.

The full cycle of the two-step refinement process renders the new A_

matrix calculated from the refined basis vectors more nearly block diagonal
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than before. Step #1 improves the accuracy of the simplified model, while

step #2 ensures that the simplified model is not stiff. The speed ranking of

the modes can be estimated by the diagonal elements of the A_ matrix.

In our example in §3.3, the set of alternative basis vectors (28a), (28b) and

(28c) used was obtained by adopting (25a), (255) and (25c) as the ordered

trial set, and then refining them analytically through step #1 using M = 1.

We obtain:

bl° _ 1
KI+4A[-2A, K1, 0] T, (51a)

1

a_ = K, +4A [ga' 2A, (Zl +4A)AH2-(K, +2A)AH1] r, (515)

a_ = [0, 0, 1]T. (51c)

These refined vectors are significantly modified from their trial counterparts.

Performing step #2, we obtain:

2Ae Kle
b_o = [1+ 2

K1 + 4A' K1 + 4A'

bo3 = [AH1 -- AH2, AHx - 2AH2,

Kle 2Ae
' [-2+ 1+ao --

KI + 4A' K, + 4A'

ol, (52a)

1], (52b)

.K1 +2A

AH, - (_-_+-_--_AH, --AH2)e],
(52c)

where e is a dimensionless parameter defined by

k2(K2 + 2)
,- (53)

k,(K, + 4A)"

These refined vectors are only slightly modified from their trial counterparts

for e << 1. Generally speaking, whenever the set of trial ai basis vectors are

intelligently chosen, step #2 will provide only small corrections. If the trial

set was randomly chosen, more than one full cycle of the two-step refinement

process may be necessary to generate the correct leading order result in the

limit of e ---* 0.

The trial set is usually chosen initially to be time-independent for the

sake of convenience. For non-linear problems, the refined set will in general
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be time-dependent, and the associated time derivatives in A} must be prop-

erly evaluated. Analytically, this is a straightforward step which could be

quite tedious algebraically. From the programming point of view, however,

good approximation to dbl/dt can be obtained in a number of ways, such as

utilizing the availability of stored values in the previous time steps and/or

the predicted values in the next time step used in most integration routines.

6 Using the Refined Basis Vectors

Using the refined basis vectors, the governing system of ODE's become:

_-=dY goO,f_st +go°'sl°_ (54)

where

M M

g:.S_,, = _ aOfo _ = ( _ aOb_) ® g, (55a)
rn=l rn=l

]_' = b_'®g, m = 1,2,...,M, (55b)
R

gO,,Zo,,, goo,f_t o,,U_,-,o g E , (55c1= -- = Sow ./¢

M

s°"'°_ (I- _ a_br)®s,, r= 1,2, R. (55d1o_r _ " " " '

m=l

The column vector _o,,-°'su'_is mathematically the projection of s, in the so-

called slow subspace or manifold, and can be interpreted physically as the

effective stoichiometric vector of the r-th elementary reaction. Unlike the

original chemical s, the components of .qo,sto,_ are not necessarily integers or, --O_r

rational numbers, and may involve species which do not appear in F'(y).

When the M fast modes satisfy the exhaustion criterion decribed in the

next section, the simplified model is simply:

dy
go°'z°'_ (56a)

dt
N

-- E a°KfoK" (56b)
K=M+I
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6.1 Classification of Modes

In general, there are three kinds of modes: exhausted modes, currently active

modes, and dormant modes. Let r(i) represent the characteristic time scale

of the i-th mode. It is assumed that:

r(m)<<r(K), m=l,2,...,M, K=M+I,...,N. (57)

The ordering among r(m) and r(K) is not important.

Exhausted Modes: By applying the exhaustion criterion (49b), the num-

ber M of exhausted fast modes is determined, yielding a set of M

approximate equations of state:

R

]on = b_ 6) g = _ Bo,_F r ._ O, m = 1,2,..., M, (58)
r=l

where

B_,_=bioq) S_, i=l,2,...,N, r=l,2,...,R. (59)

Currently Active Modes: The remaining N-M modes are kept in (56b).

Using (55c), we rewrite the simplified model as follows:

dy _ -°"'°_ (60)
-_ ,_ So,r r

r=-I

Equation (60) can be numerically integrated without the need of a

stiff solver. The integration time-step used should be a fraction of

r(M + 1), the characteristic time scale of the (M + 1)th mode. The

initial condition of (60) must satisfy (58) in the sense of (49c). If

the initial trial fast column basis vectors were randomly chosen, the

accuracy of (60) is O((r(M)/r(M + 1)) c where c is the number of full

two-step refinement cycles. If they were initially "intelligently" chosen,

then c is the number of step #1 refinements.

Dormant Modes: The amplitude of some of the slow modes kept in (56b)

may be extremely small or even identically zero. When a slow mode is

deemed negligible---when the its contribution to go°''l°_' in the current
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time period is estimated to be less than Y,rror component by compo-

nent, it is said to be a dormant mode. In the example, mode #3 is a

permanent dormant mode. If mode #N is a dormant mode, then:

fN=b_®g_0, (61)

or,
R

/ff = BNo,Fr 0. (62)
r=l

However, unlike (58), (62) is not a useful equation--it can not be used

as an approximate equation of state. Instead, (61) is the more useful

equation, indicating that the vector g has negligible projection in a

specific "direction." If b_ can be shown to be the gradient of a scalar--

a condition known as holonomic constraint in classical mechanics--then

that scalar is a conserved "integral of motion." Conservation laws of

atomic species manifests themselves as permanent dormant modes with

constant row vectors (which are always holonomic). Equation (33c) is

a conservation law since b 3 is holonomic and f3 is identically zero.

The solution of (60) automatically satisfy (58), (61) and (62). The

distinction between (58) and (61) will be further discussed later.

6.2 Equation of State and Participation Index

The left-hand side of (58) usually consists of large positive and negative terms

which nearly cancel each other. Which elementary reactions participate most

strongly in this balancing act? The participation indez, denoted by P_,o, is

designed to provide this information and is defined as follows:

P_,o- Bi°'_F_ i=l,2,...,N, r=l,2,...,R.
b i

E Bo,F [+ I
r=l

(63)

where it is assumed that forward and reverse reactions are counted as dis-

tinct so that no cancellation occurs within any F _. P_,o is a measure of the

participation of the r-th elementary reaction to the balancing act of the i-th
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mode. To get an idea of which elementary reactions are the major partic-

ipants of each fast mode, we just need to sort the elementary reactions by

their participation indices. A exhausted fast mode usually has several sig-

nificant participation indices, a slow dormant mode may not have any, while

a permanently dormant mode representing a conservation law has none. In

our example worked out in §3.3, the participation index data for mode #1

will show that reaction #1 is the main participant of fa as defined by (30a),

reaction #2 is the main participant of f2 as defined by (30b), while f3 = 0

has no participant at all and can be interpreted as a conservation law.

6.3 Simplified Model and Importance Index

The right-hand side of (60) consists of terms which control the reaction rate

of the system. For each component of the state vector y, we can order the

terms on the right-hand side in descending magnitudes. Which elementary

reactions are most important in controlling the reaction rate of a particular

species of interest? The importance indez, denoted by I_ '° and designed to

provide this information, is defined as follows:

i,o,_lowFr
So,r _ i = 1,2,...,N, r = 1,2,...,R.Ioi, -_r R , I'

E i,o,slow,_r I Yerror o,r -" I+ I
":' (64)

1o_'°_is a measure of the relative importance of the contribution of the r-th

elementary reaction to the current reaction rate of the i-th species. Note that

if I_'s were computed using the default st's, we would obtain the misleading
information that the fast reactions are rate-controlling even after they are

exhausted. In general, the values of the importance indices change discon-

tinuously at the moment when a new fast mode is declared exhausted--the

C,_ s of the major participantsin the new exhausted mode willdrop, while

those in the emerging rate-controllingmodes willrise.In the example worked

out in §3.3,the importance index data on (36) computed using No,,-°'°z°_(see

§7.5) willshow that reactions #1 and #2 are important in controllingthe

overallreaction rate but each in theirown time period only.
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6.4 The Radical Pointer

When M modes are exhausted, M algebraic equations are obtained from (58)

which can be used to replace M of the ODE's in the subsequent epochs. The

question is: which ODE's can be replaced? In other words, which species are

the radicals?

CSP associates with each exhausted mode one or more species by the

radical pointer. The radical pointer of the m-th mode, Qm(i), is defined by

the N diagonal elements of the N × N matrix arab '_, refined basis vectors

preferred. Geometrically, the magnitude of Q,_ (i), which is dimensionless and

its sum over i is unity, is a measure of how "perpendicular" the i-th species

axis is to the surface defined by the m-th equation of state in y space. A

species k is identified as a CSP radical associated the m-th exhausted mode

whenever Qm(k) is not a small number.

For the example treated in §3.3, we have for mode #1:

1(4A2 0)= -2A K_ 0 . (65)
albl KI + 4A -2AAH1 K1AHI 0

The set of its diagonal elements is the radical pointer:

1

Ql(i) - KI + 4A [4A' K1, 0]. (66)

This radical pointer informs us that either A or B, but definitely not C, may

be used as a radical. In other words, only the ODE of either A or B can be

replaced by (35b).

Maas and Pope (1992) did not realize that the choice of what species to

solve for from the equations of state is restricted, and suggested that they

"... can be chosen quite arbitrarily" with special caution on uniqueness of

solutions. This is not our experience (Lam and Goussis, 1991b), and (66)

is developed to provide a quantitative criterion for radicals. We have tested

our radical pointer criterion by purposely solving for the "wrong" species--

according to our radical pointer--from (58) in a number of test problems,

and obtained wrong answers as expected.
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6.5 The Radical Correction

What if the values of fo_ in (58) are small but not as small as we would like

at some moment in time? Theoretically, all M modes should rapidly decay

to some much smaller values in the next several r(M) seconds, while the

main reaction activity proceeds with the current characteristic time scale of

r(M + 1) seconds. If we are not interested in the details of the decay process

but are only interested in finding an approximate "initial" condition for the

next time period, we can use Newton's method to find the change to the

value of y, Ayrc, which would zero out the values of fo_,m = 1,2,..., M :

M

Ay,.c_- _ a°,,,r_f_. (67)
rntn_l

In other words, y _ y + Ayrc as the amplitudes of the fast modes decay

toward zero in the next several r(M) seconds. We shall call Ay,c the radical

correction. In Lam and Goussis (1991a), the radical correction was referred

to as "inclusion of the homogeneous solution" in evaluating the change of y,

but no details were given there.

When a simplified model is used to compute for an approximation solution

by neglecting the M exhausted modes, the values of fo_'s are small at the

beginning of the time period and are theoretically expected to remain small

in the slow evolutionary period. The radical correction can be used to ensure

that the numerical solutions adequately satisfy the approximate equations of

state as required.

Suppose the initial values in the example worked out in §3.3 does not

satisfy the partial-equilibrium of mode #1:

n, + # o,
L'(o) = F'(o) + gx + (68)

and the solution in the rapid transient period is of no interest to the in-

vestigator. The radical correction can be used to obtain the effective initial

values, the counter part of (14), for the next time period. With M = 1,

r_ = -(kl(K1 + 4A(0)) -1, (67) gives:

2fo'(o)
A(O+) A(O)- k (K, + 4A(0))' (69a)
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f_(0) (69b)
B(0+) _ B(0) + k,(K, + 4A(0))'

AH' f°_ (0) (69c)
C(0+) _ C(0) + k,(K, + 4A(0))"

It can easily be verified that (10) is satisfied and A + 2B is unchanged by

this radical correction, while the new value of f2(0+) becomes much smaller

than before. By recursive applications A(0+) will converge to (14), and

]'o1(0+) will converge to the nearest stable zero. The computation for the

slow evolutionary time period can now commence with (36) with the new

initial values.

6.6 Explosive Modes

For chemical kinetics, the eigen-values of J are usually real, and mostly

negative, signifying decaying modes. Occasionally, some modes may have

positive eigen-values, signifying "explosive modes" which are often of interest

in the study of "ignition" mechanisms (Trevino and Solorio, 1991; Trevino,

1991). In our example, whenever A < K1/(2K2) an explosive mode exists

which is clearly the manifestation of the chain branching of the B radical in

the reaction system.

Because the matrix A_ is not exactly block diagonal, the non-zero cou-

pling between the fast exhausted modes and the slow explosive modes can

cause some exhausted modes to come alive again. From the point of view of

computation and programming, this complication is easily handled.

6.7 The Minimum System

Using the participation and importance indices, it is a simple matter to

identify the minimum set of species and unknowns (ignore the unimportant

reactants but includes any species of special interest to the investigator) and

the minimum set of elementary reactions (ignore the unimportant reactions)

to form a minimum reduced reaction system which can represent g to any

reasonable desired user-specified threshold of accuracy for any time period(s)

of interest.
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7 Comments on CSP

In terms of elegance, there is no substitute for a conventional asymptotic

analysis of an appropriately non-dimensionalized problem with a well de-

fined small parameter _, with analytical results expressed in terms of simple

functions.

In dealing with practical problems, there exists few guidelines for order of

magnitude estimates and the intelligent non-dimensionalization of the vari-

ables. The identification of the small parameter _ is also not straightforward;

for a real problem it may be insufficiently small even when successfully identi-

fied. For moderately complex reaction systems, the formalism of asymptotics

must be replaced by ad hoc quasi-steady and/or partial-equilibrium hypoth-

esis, and the role of experience and intuition then becomes central. With

sufficient algebraic skill, such methodology is indeed capable of generating

analytical results. However, for massively complex reaction systems, this

option is simply not viable.

The theory of CSP provides a new formalism to do asymptotics. Most im-

portantly, it does not require non-dimensionalization of the variables and the

identification of a small parameter. The time-dependent value of r(M)/r(M+

1) is the small parameter. The CSP algorithm can be performed analytical-

ly for sufficiently simple problems, as was demonstrated in §3.3, and it can

be programmed to handle massively complex problems--provided the fast

modes are of the boundary layer type and decay with time eventually.

CSP can be used to test an intuitive guess, provides a fool-proof way

to obtain the correct leading approximation in the absence of good ideas,

and allows the theoretician to concentrate on the task of extracting phys-

ical insights--because all the massively complicated algebra are left to be

performed numerically on the computer.

In most cases, it is relatively easy to interpret a CSP-generated equa-

tion of state as either a partial-equilibrium or a quasi-steady approximation.

However, there are also situations when such interpretation is not immediate-

ly obvious, and the CSP data becomes physically sensible only after further

reflections.

From the point of view of asymptotics, CSP is distinctly different from

the conventional analytical method of "matched asymptotic expansions," for

no asymptotic matching is required. A detailed discussion of the differences,

however, is beyond the scope of this paper.
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7.1 Local-Eigen Vectors vs. Refined Basis vectors

As mentioned previously, the set of local eigen-vectors of J is a fool-proof

choice for use as trial basis vectors. In fact, the special set of basis vectors

((28a), (28b) and (28c)) used in §3.3 is the leading order approximation

of the right eigen-vectors of J, with k2K2/klK1 playing the role of a small

parameter. If only so-called leading order approximation (for sufficiently

small k2K2/klK1) is desired, this set is totally adequate. But what if the

value of k2K2/klK1 of practical interest is only 0.15, and it is desired to

develop a simplified model with accuracy around 3%? The CSP refinement

procedure can be recursively applied to improve the accuracy.

The CSP theory formally guarantees that each full cycle of refinement

increases the accuracy of the simplified model by the factor T(M)/r(M + 1).

In the first full cycle, we can generate the leading approximation by using

constant trial vectors so that no time derivatives are included. In most

cases, the leading approximation to a complex problem is adequate to provide

most physical insights. The second full cycle needs the evaluation of first

time derivatives, and the third full cycle needs the evaluation of second time

derivatives, etc. Mathematically, these time derivatives are all available.

Hence CSP is capable of significantly higher accuracy than using just the

local eigen-vectors. It is, of course, not at all necessary to use the local

eigen-vectors as trial basis vectors; any informed, intelligent guess can be

used. In a computer code, it is possible to implement two full refinement

cycles using relatively little computational resource.

To continue beyond §3.3, we may choose (28a), (28b) and (28c) as our

time-dependent trial set, respecting the presence of A(t) in a2 and b 1. This

(second) refinement proceeds routinely except that the time derivative term

in (41) must be included in evaluating A_. The new CSP-derived simpli-

fied models so generated will be accurate to O(k2K2/klK1) 2, compared to

O(k2K2/klK1) for the results obtained earlier. One more cycle of refinement

will generate models of accuracy O(k2K2/klK1) 3, etc.

7.2 Equation of State and Conservation Law

In the combustion literature, the concept of conserved scalars is linked with

the assumption of equal mass diffusivity coefficients and unity Lewis number-

s. Since no diffusion effects are considered here, these requirements become
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irrelevant. In this section, we shall show how (approximate) conserved scalars

for such systems can be found as a by-product of CSP.

Taking the dot product of b_ with (54), we have:

dy
b_®_-=fo i, i:1,2,...,N. (70)

Ifa row vector b_ can be expressed as the gradient (with respect to y) of a

scalar function On,o(y) times a scalar function 0n,o(y), then the mode shall

be called an holonomic mode--a concept well known in classical mechanics.

The corresponding equation is (70) is called an holonomic constraint, and

can be rewritten as:

On,o dO_,°
dt - f_' selected n's. (71)

We shall call On,o, when it exists, an eligible conserved scalar.

When the m-th fast mode becomes exhausted, an equation of state is

obtained by setting fo_ _ 0. If this mode is also holonornic, the associated

eligible conserved scalar O_,o then becomes a ezhausted conserved scalar--

its value remains constant from the moment of exhaustion. It is likely that

all exhausted refined fast modes are holonomic, and that Om,o and fo_ are

linearly dependent--thus no new information is provided by the exhausted
conserved scalars.

When the amplitude of the K-th slow mode is found "negligible," setting

this dormant mode fog _ 0 yields no information at all. We can only conclude

from (70) that the component of the vector dy/dt "in the the direction of

a_¢" is negligible. However, if this dormant mode is holonomic (e. g. bff are

constants, yielding OK,o = 1, OK, o = bff ® y), then the associated Og,o is a

dormant conserved scalar--its value is approximately conserved whenever the

K-th mode is dormant. Conserved scalars in the combustion literature are

dormant ones, and they almost always have simple physical meanings, such

as conservation of atomic species or total energy. While Or,o ,_ constant is

also an algebraic relation between the species, we do not call it an equation

of state because the constant is not universal.

In our example, the basis vectors used in §3.3 are the leading order results

obtained by refining the trial basis vectors given in §3.2. Equations (33a),

(33b) and (33c) correspond to (70) and they are all holonomic. The eligible
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conserved scalars are (M = 1):

_I_o

02,o

(_3tO

-- -A 2 + K1B, (72a)

= A+2B, (725)

= (AH1 - AH2)A + (AH1 - 2AH2)B + C, (72c)

with 1

01,o- KI+4A' 02,o=1, 03,0=1. (73)

All three refined modes in this example are exactly holonomic. In general,

there is no guarantee that any CSP refined mode is holonomic4--it is not

possible to determine from numerical CSP data whether a mode is holonomic

or to deduce the form of the possible eligible conserved scalar except for the

obvious case of time-independent bo_.

7.3 The User-Specified Yerror

The role of a theory is to construct a model which should be as simple as pos-

sible and yet can generate valid predictions in some domain of the parameter

space of interest. A good model need not predict all things correctly. For

example, a certain simplified model may be very good indeed for the heat

release and temperature history, but very bad for the predictions of certain

pollutant concentrations. For the same reaction system, different simplified

models may be appropriate depending on the desired scope and accuracy of

the solutions.

The CSP theory addresses this issue by choosing not to directly define a

vector norm for the N-dimensional state space of y. Instead, it asks the in-

vestigator to supply the vector y,_,o_, which specifies the amount of absolute

error considered tolerable for each component of y. This step is intuitively

sensible, and is conceptually equivalent to choosing a norm. The CSP the-

ory relies on this Y_,_o, to decide whether a decaying fast mode should be

neglected. As a consequence, a CSP-derived simplified model which focuses

4A sufficient but not necessary condition for the n-th mode to be holonomic is that
b" = constant. Hence contant trial row basis vectors always generate holonomic modes,

but the resulting eligible conserved scalars may never become conserved scalars. For our
example, if the default trial b 1 in §3.2 were used, we would obtain el = -A - B which,
in contrast to el,o, is not conserved after fast mode #1 is exhausted.
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on temperature only may be quite different from one which claims additional

predictive capability such as pollutant concentrations.

If too stringent a Y,r,or is chosen, CSP would simply report M = 0

and would fail to recommend any simplified model. As y,r,o, becomes more

forgiving, CSP would recommend simplier models consistent with the spec-

ified tolerance. This posture of producing simplified models on demand is

refreshing--when compared to the posture of conventional asymptotics.

7.4 Insights from CSP Numbers

In a theoretical analysis, no specific numerical values of the parameters in

the problem need be specified; only their order of magnitude is assumed.

While the accuracy of the analysis may be limited--because the small pa-

rameter may not be that small in practice--the parametric dependence of

the results are available for inspection and interpretation. An experienced

theoretician can speak knowledgeably about the reaction system and inter-

pret the analytical results in physically meaningful and intuitive terms such

as chain branching, radical formation, ignition temperature, alternative re-

action paths, etc.

When results are obtained computationally, each set of numerical data is

valid only for one specific set of parameters. For massively complex problems,

the computer printouts are overwhelming. The interpretation of these num-

bers is a much more difficult matter. The CSP data generated, which is all

numerical, is designed to be easy to use to extract qualitative and physically

meaningful insights.

For non-linear problems, the CSP data is itself massive. However, it need

not be computed at every time step; it is needed only when the theoretician

wants to know: what is going on here? While the time dependence of the

reaction system may appear to be very complex, the CSP-derived refined

basis vectors may depend only weakly on time, and the simplified model

derived at selected points in time can provide insights about the "physical

mechanism" of the system for a finite time interval. In fact, significant change

of the behaviors of basis vectors is a signal that the physical mechanism has

changed, and a new simplified model is needed. For linear problems, a single

set of CSP data--the eigen structure of the constant matrix J--will explain

everything for all time. For our simple example (which is non-linear), a single

set of time-independent trial basis vector is adequate to generate the correct



Appendix I 53

refined set for all time.

From the CSP viewpoint, the problem of simplified kinetics modeling re-

duces to finding a set of basis vectors which make A_ block-diagonal. The

conventional methods guess at them, while CSP provides a rational and pro-

grammable way of refining a trial set to make the resulting A_ more diagonal

than before. For massively complex problems, the computer is assigned the

task of computing an adequate set, and the investigator uses common sense

to extract physically interesting information from the computer generated

numerical basis vectors. The participation index and the importance index

are provided to quantify the roles played by each elementary reaction includ-

ed in the model. Together they provide answers to most of the interesting

questions about a reaction system. Any simplified model derived based on

intuition and experience can now be compared with the CSP-derived results

to verify that the various judgments and guesses used are correct.

Depending on the user-specified accuracy threshold, y,_ror, certain chem-

ical species and elementary reactions can be removed from the reaction sys-

tem, producing the so-called reduced reaction system. The more lenient y¢r_o_

is, the simpler the CSP-derived reduced system--while the essential charac-

ter of the full system is retained. In Goussis and Lam (1992), the methanol

oxidation problem was studied with 30 species plus temperature and 173 el-

ementary reactions. The CSP data generated can be roughly divided into

four epochs, each characterized by a distinctly different set of CSP-derived

basis vectors, and together they indicated (through the CSP indices) that

a reduced reaction system with 15 species (including methanol) would have

adequate accuracy for all 15 unknowns. This CSP-derived insight was com-

putationally confirmed. This reduced reaction system, of course, makes no

predictions on the discarded species.

7.5 CSP vs. Sensitivity Analysis

The standard method of sensitivity analysis (Yetter, Dryer and Rabitz, 1991)

is to linearize the problem and then to compute for the linearized response

to various perturbations. For example, if one wishes to know what happens

to y9S when k12z is changed by a small amount, one numerically computes

d(log ygS)/d(log k127).

CSP provides an alternative to this brute-force method. First, we look

at the participation indices P_z,o, m = 1,2,..., M. If these indices indicate
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that reaction #127 is a significant participant of the m-th exhausted fast

mode, then k12r will directly affect the values of the radicals pointed to

by the radical pointer Q,_(i). Otherwise k12r has no effect on the radicals.
rgS'° • its numerical value tells us howNext, we look at the importance index -o,12r,

strongly ki2r affects the reaction rate of ygS.

Frequently, it is desired to know what would happen if additional ele-

mentary reactions were added to a reaction system after a computation is

already done. CSP can be used to provide useful answers. To illustrate, let

reaction #4 be added to our example reaction system:

reaction#4 : B + B _ A. (74)

Its stoichiometric vector and reaction rate are:

s4=[1, -2, AH4] T, F 4=k4(B 2-K4A). (75)

Since s4 is not linearly independent, we have:

s4 = sl - 3s2 - (AH, - 3AH2 - AHa)s3. (76)

Hence:

Bi4 = B_ - 3B_ - (AH, - 3AH2 - AH4)Bi3, (77)

.... (78)80,4°'sl°w .-- So,l°'Sl°w _ °so,_"o,ao,o _ (AH1 - 3AH2 -/x/-/4)so,3 •

Using the basis vectors in §3.3, we can computed the following CSP data:

B_ =1, B_ =_N,+4A, B_=0, (79a)

B_ = 0, B_ = 1, B_ = 0, (79b)

B13 = 0, B 3 = 0, B33 = 1, (79c)

and (for the time period when M = 1 only),

So, 1 _-_

o,$1ow
So, 2

[o, o, o]r, (8oa)

1 [K1, 2A, (K1 + 4A)AH2 - (K1 + 2A)AH1] T, (80b)
K1 + 4A

[0, 0, 11T. (80c)
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The effective stoichiometric vectors for the other two time periods are also

available. It is now a simple matter to compute the participation and im-

portance indices for reaction #4 from this CSP data and decide whether its

previous omission can be justified in any time period of interest. If the in-

dices P_,o and _,o show that reaction #4 is a major player, then the old basis
vectors should be refined to reflect the new character of the new reaction

system.

7.6 Effects on Diffusion

If spatial diffusion is included, the governing equations will contain the Lapla-

cian operator, and become a system of PDE's:

dy
d--t-= g + D ® V2y (81)

where D is--in most cases--a N × N diagonal matrix of diffusion coefficients

which are considered constants here for the sake of simplicity.

Assuming that the spatial diffusion mechanism is not the fastest process,

we can obtain the corresponding approximate equations of state, (58), when

the fastest M modes are exhausted as before. In the slow evolutionary time

period and spatial domain, the fast modes can be neglected from the right-

hand side of (81) to obtain, instead of (60), the following simplified model:

dy n
•-" (82)D_2..,So,_ 1" +Do °®V2y

dt
r_-I

where D_ is the effective diffusion matrix, the projection of D in the slow

subspace, given by:
M

D O - (I - _ a_,b7) ®D. (83)
rft_l

Let the diffusion matrix D in our example be diagonal, with DA, DB,

and Dc as the diagonal elements:

DA 0 0 )
D = 0 DB 0 .

0 0 Dc

(84)
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When M = 1, the effective diffusion matrix D ° can be computed from (83)

and (65):

1 ( KIDA 2K1DB 0 )
2ADA 4ADB 0 . (85)

DO = K1 + 4A 2AAHIDA -K1AH1DB (K1 + 4A)Dc

This derivation of DO using CSP basis vectors is straightforward and pro-

grammable, and can be used to deal with massively complex PDE systems.

Adjacent to solid boundaries, spatial boundary layers will exist, and effective

boundary values for (82) are needed and must be carefully derived.

8 Discussion

Experience and intuition have always been central to the conventional deriva-

tion of simplified models. It was generally known that both the partial-

equilibrium and the quasi-steady approximations were related to convention-

al analytical singular perturbation procedures--provided that the relevant

small parameter(s) could be identified.

The goal of developing a general theory of singular perturbation which

can handle any system of non-linear first order ODE's in a programmable

manner without the identification of small parameter(s) seems very ambitious

indeed. The CSP theory developed by Lam et. al. has achieved this goal,

but only for boundary-layer type problems where all fast modes eventually

decay exponentially. Fortunately, most problems in chemical kinetics are of

this type.

The basic strategy of CSP is to uncouple the fast, exhausted modes from

the slower, currently active modes though an intelligent choice of basis vec-

tors. For a strictly linear problem, the ideal uncoupling basis vectors are the

time-independent eigen-vectors of J. For non-linear problems, the desired

uncoupling basis vectors are time-dependent because Aj depends on y(t).

The main concession made by CSP is to abandon the goal of diagonalizing

A_ and be satisfied with a nearly block-diagonal one. A programmable re-

cursive refinement procedure is provided to successively weaken the fast-slow

couplings.

Pragmatically, the extraction of physical insights from the CSP data is

advantageous only if the CSP data, such as the participation index and the
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importance index, changes less rapidly with time than the solution y(t). In

problems involving chemical reactions, the basic chemical process is usual-

ly described by a reaction rate F _ and a constant stoichiometric vector s_.

Whatever simplifications which are available can usually be attributed to

some reactions being much faster than others and had now spent themselves.

As a consequence, good decoupling basis vectors in chemical kinetics are

most likely to be weakly time-dependent, because the relevant chemically

meaningful stoichiometric vectors of the fast reactions are time-independent.

In the example studied in §3.3, the information extracted from the CSP data

hardly change with time at all, because the "mechanism" of the problem did

not change.

The CSP algorithm depend on the fast modes to become exhausted, which

translates into assuming that the fast eigen-values of J are "essentially real"

and negative. Theoretically, if a highly oscillatory fast mode does not damp

out (i.e. a Wentzel, Kramers and Brillouin (WKB) type problem), CSP

will only be able to identify this mode, but will not be able to provide an

algorithm to handle the evolution of y in the next larger time scale. The

extension of CSP to WKB type problems remains to be explored.

CSP can be used, in principle, on problems which have a large number

of modes but only moderate amount of time scale separation (i.e. the ratio,

(r(M + 1)/r(M)), is only moderately large), provided that only moderate

accuracy is desired. It thrives on large time scale separations, and performs

best when the separations are "asymptotically large."

9 Concluding Remarks

A computer code, called CSP91 and programmed by Dr. Dimitris Goussis,

has implemented the CSP algorithm, and is available on request. The code

can be used either as a diagnostics subroutine, or as an stiff ODE solver. It

has been used to demonstrate in a number of test problems (Lain et. al., 1989;

Goussis et. al. 1990; Goussis and Lam, 1992) that numerical solutions gen-

erated by the CSP-derived simplified models are in quantitative agreement

with that of the corresponding full models in accordance to the accuracy

thresholds specified. Different simplified models are generated for different

user-specified Yet,or. The CSP-derived insights, such as which fast reactions

are in partial-equilibrium with each other (through the participation indices),
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which reactions are rate-controlling (through the importance indices), which

species can be considered as radicals in the CSP context (through the rad-

ical pointers) and how they can be solved for from the equations of state

(through the radical correction), have been thoroughly tested and verified.

In most cases, the CSP-derived insights are consistent with the expectations

of competent chemical kineticists knowledgeable in the reaction system under

study. For the few cases when the CSP-derived insights appeared surprising

at first sight, they all eventually became obvious after further reflections.
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A STUDY OF HOMOGENEOUS METHANOL OXIDATION KINETICS USING CSP

D. A. Goussis and S. H. Lam

Princeton University, Princeton, NJ 08544

Abstract

The homogeneous oxidation of methanol in air at constant pressure is
examined using data generated by the method of computational singular perturbation
(CSP). At any moment in time, the number of exhausted fast modes and the radicals
(sometimes called the intermediaries) are computationally identified. The
participation index, which quantifies the participation of any elementary reaction to
an equations of state of the radicals, along with the importance index, which
quantifies the importance of any elementary reaction to a particular species of
interest, are computed and used to assess the sensitivities of the solution to the
reaction rate constants. Every elementary reaction is classified so that it either

belongs to the equilibrated set which contains fast reactions already, equilibrated
among themselves, and/or the rate-controlling set which contains reactions
controlling the current rate of activities, or neither of the above sets - in which case
it is superfluous. A number of numerical experiments were performed to verify the
assessments: (a) the relative effectiveness of the reaction rate constants of two
reactions (#16, #160) in breaking up the fuel indicated by the importance index is
verified, (b) that fuel breakup in an early time period can actually be slowed down

by increasing the reaction rate constants of certain fuel breakup reactions (#156,
#159) is verified. Numerical experiments also show that species identified as
radicals respond instantly to sudden changes in reaction rates, while the non-
radicals respond more smoothly. The overall response of the unknowns to

perturbations is always consistent with the CSP-derived effective stoichiometric
coefficients. In addition, a minimum set of species is constructed with the help of
the CSP data. This minimum set, which trims the original full set of 30 species to

15 species, generates numerical solutions in excellent agreement with solutions
obtained with the full set

I. Introduction.

The present paper studies the constant pressure oxidation of methanol in air. The full

kinetics mechanism, taken from Egolfopoulos, Du and Law 1 [EDL], consists of 30 species and

173 reversible elementary reactions. A partial list of the elementary reactions is given in Appendix

I. The case of a fuel-lean (equivalence ratio--0.6) mixture at 1 atmosphere will be considered. The

initial state of the system is taken to be: T(0) = 1027°K, Y[CH3OH](0) = 0.00779, Y[O2](0) =

0.01980, Y[N2](0) - 0.9724, where T is temperature and Y is mass fraction. The calculation is

performed in a Chemkin environment 2, and the resulting numerical solution is analyzed using the
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data generated by the method of computational singular perturbation (CSP) developed by the

authors3A, 5.

Figs. la and lb show the time evolution of four species; similar plots for all the other

species and the temperature are readily available. The oxidation of CH3OH can be described as a

four-stage process. The f'u'st stage, 0.00 seconds < t < 0.05 seconds, is an incubation period in

which certain radicals axe created. The breakup of the fuel occurs in the second stage, 0.050

seconds < t < 0.079 seconds. The third stage, 0.079 < t < 0.081, consists of the very rapid

conversion of CO to CO:. The conversion of the remaining CO to CO2 takes place in the fourth

stage, 0.081 < t < 0.130, with progressively slower rates. The integration of the kinetics equations

is straightforwardly performed by a CSP ODE solver which, in addition to generating solutions of

guaranteed user-specified accuracy, also generates a set of CSP data. Each time interval between

markers shown in Figs. la,b covers 24 integration time steps selected by the CSP code.

2. Preliminary Discussions

The conventional derivation of a simplified model requires that the "radicals" and fast

reactions in the reaction system be somehow identified, and the quasi-steady and partial-

equilibrium approximations be systematically 6,7,8,9 applied. Considerable intuition, experience

and mathematical skills are required. The simplified model so obtained is highly valued because it

identifies the rate-controlling elementary reactions, and can be used to provide or interpret the

sensitivity information 1°,11,12 of the reaction system. The CSP method performs the above tasks

routinely using a programmable computational algorithm, and can generates time-resolved

simplified models without the need of intuition and experience. A brief summary of the CSP

method is given in Appendix II.

3. The Identification of Radicals

Including temperature, the system of ODEs of the [EDL] full mechanism consists of 31

unknowns and 173 reversible elementary reactions. Let y = [y1, y2, .., yS]r be a column vector

of the N = 31 unknowns. Let _l_+(y) > 0 and Fk(y). > 0 be the forward and backward reaction rates

of the k-th elementary reactions, where k=l, 2, .., R with R=173. In general, the governing

equations can be written is the following compact form:

÷},dt = g(y) = Sk
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where s k is called the stoichiometric vector of the k-th elementary reaction, and the summation

convention is used. Since this is a 31-dimensional system, the solution is expected to have 31

"modes." These modes are ordered by CSP according to their speed: mode #1 being the fastest

and mode #26 being the slowest. Modes #27 to #31 are constants and do not evolve with time;

they represent the conservation of energy, the conservation of C, H, and O atoms and the inertness

of N2. In addition, CSP computationally determines M, the number of exhausted fast modes (see

Appendix II). Fig. 2 shows M vs. time. Each of the exhausted fast modes is associated by CSP

with either a quasi-steady approximation (for a certain radical species) or a partial-equilibrium

approximation (for a certain set of fast reactions). In the present paper, we shall call a species a

radical when it can accurately be computed in terms of the other "major species" from certain

approximate "equations of state" derived by CSP. More will be said on this in §4 later. The

identification of these radicals was achieved by the use of Q(m; i), the "radical pointer" of each of

the m exhausted modes, as described in Appendix II.

The following information is obtained from the CSP data for each of the four stages:

First Sta_e (0.00 < t < 0.05 seconds). M = 14. The following 14 species are identified as radicals:

CH3, C2H5, CH3CO, HCO, H, CH 2, C2H 3, CH2OH, HCCO, O, CH, C2H, CH30, OH.

Second Stage (0.050 < t < 0.079 seconds). M = 15. HO2 joins the above, making a total of 15

radicals. The breakup of the fuel is in full swing.

Third Stage (0.079 < t < 0.081 seconds). M = 12. This is a most active period in which things

happen very rapidly. Three exhausted modes becomes alive again, and CH3, H and O are

temporarily removed from the list of radicals.

Fourth Sta_e (0.081 < t < 0.130 seconds). M = 15-24. After the frenzy activities in the third stage,

CH3, H and O rejoins the list of radicals. As the fourth stage progresses, M increases from 15 to

24, mostly as the results of extinction of the carbon related species (CO and CO2 excluded). The

remaining non-carbon related radicals in this late period are O, H, OH, HO2 and H202.

4. The Simplified Model at t=0.0345

We shall demonstrate in some detail the procedures for extracting information about the

reaction system using the CSP data in one typical moment in time. At t = 0.0345, when the fuel is

breaking up and HO2 is not yet a radical but is about to peak, CSP determined M = 14, and

generated 14 approximate "equations of state":
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fm(.v) = 0, m =1 .... ,14. (4.1)

Each of these equations of state can be physically interpreted either as a quasi-steady approxi-

mation or a partial-equilibrium approximation. Samples of these 14 equations of state, suitably

normalized, are displayed below:

Exhausted Mode #1 [CH3]:

F29 33 32 _163. =F+ +F+ +1"+ +...,

0.50 -- 0.43 40.05 40.01 + ...,

(4.2a)

Exhausted Mode #5 [H]:

43 F5.3 3 _156 _12 38 _157 1 11 9F+ + -,- +F+ _t,+ +t,+ +F+ +1_+ +F+ +F+ +F++...,

0.3540.14 +0.02 ,= 0.23 40.08 +0.08 +0.06 +0.02+0.02 +0.02 + ...,

(4.2b)

Exhausted Mode #13 [CH30]:

F160 _157 43
+ +1% _F+ +..., (4.2c)

0.42 +0.08 _ 0.48 + ....

Each exhausted mode is identified by the radical pointer Q(m; i) described in Appendix II with a

specific species which shall be referred to as a radical. The left and fight hand sides of (4.2a,b,c)

are the rates of production and consumption of the identified radical. The terms on each side are

ordered in descending order of magnitude; sufficient terms are kept so that the total contribution of

the omitted terms is below a user-specified threshold. The numbers displayed below each term is
in

the participation index, Pk' which is defined in Appendix II and measures the significance of the

k-th reaction to the m-th exhausted fast mode.

In addition, CSP derives the following simplified model:

dy Ck{Fk+ Fk} (4.3)(it- - . ,

where ck is called the effective stoichiometric vector of the k-th reaction. Mathematically, it is the

projection of the original stoichiometdc vector sk in the currently active slow subspace. Samples

of these 31 equations are displayed below:

d[CH_] 17_16 17 _160 17,-29 17_43 17 ,,.156 17_33 17 ,,.159
-Cl6t_+ +c160_+ +c29 r_ +c43t % +c156r+ +c33r+ +c159r+
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+ ..., [CI-h]= y17, (4.4a)

dH-I]_ 7 _16 7 .-.15 7 _162
_-_ c16t,+ + c15t,+ + c162t,+ + .... [H] = y7, (4.4b)

d[CH_OH] 15,..16 15 ,.160 15 40 15 ,-.162 15,57 15,53
c162r+ c57t_+ c53r+dt ---c 16r+ + Cl60r+ + c40t'+ + + +

- 0.40 - 0.16 + 0.12 - 0.05 + 0.05 + 0.05

+ ... , [CH3OH] = y15, (4.4c)

where the coefficients cik (the i-th element of ck) are provided1 by CSP numerically. The numbers

displayed below each term in (4.4c) is the importance index, I1_5, a measure, of the significance of

the k-th reaction to the simplified equation for CH3OH. The definition of I_ is given in Appendix

II. Again, the terms on the right hand side are ordered in descending magnitude; sufficient terms

are kept so that the total of the omitted terms is below a user-specified threshold. Note that the

solution of these 31 equations automatically satisfies the 14 approximate equations of state given

symbolically by (4.1) and explicitly by (4.2). Once may freely replace the differential equation for

any radical, such as (4.4b), by its equation of state, in this case (4.2b).

It is interesting to compare the CSP derived simplified model equations with the original

equations. For [CH3OI-I], the original equation is:

(dfCH3OH]h 32 _159 _160 _156 _162 _157
dt )original =" -{r+ +1_+ +t_+ +1_+ +1_+ + ... }, (4.5a)P

where p is total mass density. Using the CSP-computed numerical values for C_5," the simplified

equation for [CH3OH] is:

(d[C_OH])csP p". 32{2.25F1+6 + 1.19F160 .0.75F40 + I_+-162_ 0.34F5+7 + 0.94F5+3

+ ...}. (4.5b)

The terms in (4.5a,b)areordered in descending magnitude. In contrastto (4.5a)where each term

involvesmethanol as a participantin a reaction,only reactions#160 and #162 in (4.5b)directly

involvemethanol. Similarobservationcan be made forallthe simplifiedequations.For example,

none of the seven reactionslistedin the CSP-derived (4.4a)for [CI-h]involves CI-h. Theoret-

ically,the differencebetween the righthand sideof the originaland the CSP-derived simplified

equationsissome linearcombinations of the equationsof stategiven symbolicallyby (4.1)and

explicitlyby (4.2).Even though the CSP-derived simplifiedequationsfrequentlydo not make

chemical sense at firstglance, our experience is that they usually make sense upon further
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reflections. Computationally, solutions obtained from the CSP-derived simplified equations and

from the full equations agree within user-specified bounds.

Similar information can be obtained for any moment in time.

5. The Importance Index

i
The importance index Ik defined in Appendix II measures the importance of the k-th

reaction to the i-th unknown. Figs. 3a and 3b show I_ 5, the importance index for CH3OH, for

reactions which do and do not involve CH3OH, respectively. These two graphs provide concise

information on the rate-controlling reactions for the breakup of CH3OH. By inspection, Fig. 3a,b

show that reaction #16 is the most effective reaction in both the first and the second stages, even

though it does not directly involve CH3OH. It is seen to be somewhat more effective than

reactions #160 and #162 which do. A numerical experiment was performed by increasing the rate

constants for reactions #16 and #160 by a factor of 2.5 in the first stage. The computed time

histories of CH3OH confirmed the above qualitative prediction.

In addition, Fig. 3a shows that reactions #156 and #159, which chemically consume
15 15

CH3OH, have positive importance indices in the 0.00 < t < 0.03 period: I156 > 0 and I159 > 0. In

other words, they effectively contribute positive terms in the first stage to the fight hand side of

(4.4c) - a somewhat counter-intuitive prediction. Another numerical experiment was performed in

which the rate constants for reactions #156 and #159 were simultaneously doubled. The resulting

data shows that the breakup of CH3OH was indeed slowed and delayed in the first stage, again

confirming the CSP expectation. In the third stage, however, faster #156 and #159 do favor the

breakup of CH3OH, as indicated also by Fig. 3a.

6. Classification of Reactions

The left hand side of (4.1) consists of positive and negative terms which nearly cancel each

other. Separating the positive and negative terms and placing them across an equal sign as is done

in (4.2) for each of the exhausted modes, we can pick out reactions which participate most

significantly on each side using the participation index, P_, defined and described in Appendix 1I.

We shall call the total collection of such reactions the equilibrated set. Loosely speaking, these are

the fast reactions which have equilibrated among themselves. At t -- 0.0345, the equilibrated set

consists of: forward 1, 3, 9, 11-14, 16, 30, 32, 33, 35, 38-41, 43, 53, 57, 65, 67, 71-74, 78,

84, 86, 94, 98, 101, 109, 110, 116, 120, 123, 128, 132, 141-143, and backward 29, 113, 118,

142, 147, 149.
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We can pick out, for each unknown, reactions which contribute most significantly to the
i

right hand side of (4.3) using the importance index, Ik. We shall call these the rate-controlling set.

Loosely speaking, these are the slower reactions currently driving the system. At t = 0.0345, the

rate-controlling set consists of: forward 12, 14-16, 33, 38, 40, 41, 43, 53, 57, 58, 60, 62, 101,

109, 110, 127, 156, 157, 159, 160, 162, and backward 29, 102, 127, 136. Note that these two

sets are not totally distinct; some reactions (e.g. 12, 14, 16, etc.) belong to both sets. A reaction

which belongs to neither set is obviously not important to the system and is therefore superfluous

at that moment in time.

The reactions which only belong to the equilibrated set define via (4.1) the so-called slow

subspace which may be visualized as a (N-M)-dimensional "surface" on which the N-dimensional

solution point Y(0 moves. Changing the rate constants in the equilibrated set changes the surface,

but does not change the speed of the motion. The reactions which only belong to the rate-

controlling set control the speed of the motion of y(t), but do not affect the surface on which it

moves. The reactions which belong to both sets affect both. Numerical experiments were

performed by perturbing the reaction rate of reactions #15 in a step-function manner for t :>

0.0345. Since #15 belongs only to the rate-controlling set, the response of y(t) to this abrupt

perturbation is smooth and agree qualitatively with the CSP expectations, additional numerical

experiments were performed by perturbing the reaction rate of reaction #160 which belongs to

both sets. The response of y(t) is again in qualitative agreement with the CSP expectations: some

radicals respond discontinuously, all major species respond smoothly. Such information can be

very useful in reaction-path analysis.

7. The Minimum Set of Species

Normally, one is usually interested only in the time history of a few species in a reaction

system. Using the data generated by CSP, it is straight-forward to use the CSP data to identify the

minimum set of unknowns (species) which includes an user-specified species of interest. The

following minimum set which includes CH3OH is obtained for the time interval studied: CH3OH,

CH20, H, H202, CH30, CH3, H2, HO2, CH2OH, CO, O, H20, HCO, N2, 02, OH. The

solution of this minimum set of 16 species (plus temperature) system is in excellent agreement

with the solution computed from the full reaction system. Comparison of results obtained for CO

and H are shown in Fig. lb.
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8. Conclusions

Neither of the authors are knowledgeable about chemical kinetics in general, and about

methanol oxidation in particular. The above information are presumed by us to be informative, and

are obtained routinely using the CSP data generated by the CSP code. Because of limitation of

space, only part of the available information is included here 13. The method is clearly useful for

the study of massively complex systems when intuition and experience are lacking and

conventional analysis is untenable.
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Appendix

Selected Elementary Reactions From Full

H + 02 = O + OH (84)

OH + H 2 = H + H20 (86)

OH + OH = O + H20 (94)

H + 02 + M = HO 2 + M (98)

HO 2 + H = 02 + H 2

HO 2 + H = OH + OH

HO 2 + O = OH + 02

HO 2 + OH = I420 + 02

HO 2 + HO 2 = 1-1202 + 02

H202 + M = 2OH + M

CH 3 + OH - CH30 + H

CH 3 + OH = CH 2 + HaO

CHa + 02 = CH20 + O

CH 3 + HO 2 = CH30 + OH

2CH 3 = C2H 5 + H

2CI-I 3 (+M)= C2H 6 (+M)

CH20 + H = HCO + l-I2

CH20 + O = HCO + OH

CI-I20 + OH = HCO + H20

CH20 + HO 2 = HCO + 1-1202

CI-I30 + M = CI-I20 + H + M

HCO+M=CO+H+M

HCO + 02 = CO + HO 2

HCO + HO 2 = CO 2 + OH + H

CO + OH = CO 2 + H

CO + HO 2 = CO 2 + OH

CH + O2 =HCO + O

CH 2 + H = CH + H 2 (162)

CH 2 + OH = CH + H20 (163)

CH 2 + 02 = CO 2 + H + H (164)

CH 2 + 02 = CI-I20 + O (167)

CH 2 + 02 = CO 2 + H 2 (170)

CI-I 2 + 1-1202 = CH30 + OH

I

Kinetics Mechanism of [EDL]

C2H 6 + H = C2H 5 + H 2

C2H 6 + OH = C2H 5 + H20

C2H 5 + 02 = C2H 4 + HO 2

C2H 4 + H = C2H 3 + H 2

(101) C2H 4 + OH = C2I-I 3 + H20

(102) C2H 4 + OH = CH 3 + CH20

(109) C2H 3 + 02 = C2H 2 + HO 2

(II0) C2H 3 + 02 = CI-120+ HCO

(I13) C2H 2 + H = C2H + H 2

(116) C2H 2 + OH = C2H + 1420

(120) C2H + 02 = CO + HCO

(123) CH2CO + S = HCCO + H 2

(127) CI-L2CO + OH = CH20 + HCO

(128) CH2CO + OH = HCCO + I-I20

(132) HCCO + 02 = 2CO + OH

(136) CH3HCO = CH 3 + HCO

(142) CI-I3CO + M = CI-I 3 + CO + M

(143) CI--I3CO + H = CH 3 + HCO

(147) CH3CO + H a = CH3HCO + H

(154) CH3OH (+M) = CH 3 + OH (+M)

(155) CH3OH (+M) = CH2OH + H (+M)

(156) CH3OH + H = CH2OH + Ha

(157) CH3OH + H = cn30 + Ha

(158) CH3OH + O = CHaOH + OH

(159) CH3OH + OH = CH2OH + HaO

(160) CH3OH + OH = CH30 + HaO

(161) CH3OH + 02 = CH2OH + HO 2

CI-I3OH + HO 2 = CH2OH + I-I202

CH3OH + CI-I3 = CH2OH + CH 4

CH3OH + CH 3 = CH30 + CH 4

CHaOH + 0 2 = Cl-L20 + HO 2

CH2OH + CI-I 3 = C2H 5 + OH
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Appendix II

A Summary of CSP Concepts

A1 Basic CSP Concepts and Data

The basic CSP idea is to split the N-dimensional space of the vector g into two subspaces,

a fast and a slow subspace:

g = gfast + gslow, (AI.1)

where gfast is spanned by a set of M linearly independent column basis vectors a m, (m=l, 2 ....

M). CSP provides an algorithm 5 to determine M and to compute for this set of a m along the

trajectory of the solution y(t), together with a set of row vectors b m which is ortho-normal to am:

bm.a =8 m
n n,m,n= 1,2 .... M.

The time-resolved values of M, the basis vectors a and b m appropriately ordered in
m

ascending time scales, are the basic CSP data.

A.2 Using the Basis Vectors

The fast subspace, being M-dimensional, contains M fast reaction modes, or simply

modes. For chemical kinetics problems, these modes are usually decaying modes; i.e. they tend to

become exhausted. When gfast falls below some user-specified threshold for t > tM, we have:

gfast _. 0, (A2.1)

which yields M algebraic relations between the elements of y. In other words, M equations of

state, usually derived analytically using conventional singular perturbation technique, are directly

obtained from (A2.1). Another consequence is that an approximate time evolution equation for y

is obtained for t > tM."

dy gslow, (A2.2)clt =

which is the desired simplified model of the reaction system. CSP guarantees 5 that solutions of

(A2.2) satisfying (A2.1) at t = tM will satisfy (A2.1) for t > tM, under fairly general conditions.

With M and both a
m

gfaSt=a bm.g=a tan '
m m

m bmwhere fm=b m.g=Bk { _ _},Bk

gslow, we have:

and b m available, we can express gfast in terms of them:

(A2.3)

• s k. Using (A2.3) in (A1.1) and solving for
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(A2.4a)

= bm ). Sk ' (A2.4b)
c k (I- a m i

where ck is called the effective stoichiometric vector, and elements of this column vector, ck, are

called the effective stoichiometric coefficients of the k-th reaction.

A.3 Participation Index, Importance Index and the Radical Pointer

CSP requires the user to specify Ayerror, the absolute or relative error allowed for each

dependent variables. The CSP-derived (A2.2) can be numerically integrated using some non-stiff

solver using the CSP-recommended integration step-size, At. The error that can be tolerated by g

per integration step is therefore: 8g ---Ayerror/At. Hence the theoretically neglected gfast is

numerically negligible during the integration process whenever Igfasq < 8g, which serves as the

criterion for declaring gfast exhausted. When gfast is decla_rr, d exhausted, (A2.3) yields:

0,fm=Bk { - .}-- m= 1,2,..,M, (A3.1)

which are the M equations of state referred to earlier. In general, fm _- 0 is achieved by near

cancellation of the positive and negative terms. Certain terms participate strongly in this balancing
m

act, while others are more or less irrelevant. The participation index, Pk' is introduced to measure

the degree of participation:
Bmt:(k)

k • :1: (A3.2)m

Pd:k -
IBrm{F++F r.}l + Ibm .. 8g I

where the k in numerator is not summed and the r in the denominator is summed over the 173

. m . nreactions As defined, the maximum magmtude of P is 0.50. In the preset study, terms in
• m+k

(A3.1) are ordered in descending magnitude of its P.tic' and sufficient terms are kept so that the

the positive and negative sums are at least 0.48 and -0.48, respectively.

Similarly, not all reactions in (A2.4a) contribute equally to gslow. The importance index,
i

Ik, is introduced to assess the degree of importance of the k-th reaction to the i-th element of y:

ikF(k) (A3.3)

_'-k= k:ir{l_++Fr}l +1 8g i I'

the k and r indices on the fight hand side are treated as before. Again, terms in (A2.4a) are order in

descending magnitude of I_k so that the sum of I Ii_+_kI is above some user-specified value (the

present paper used 0.9).
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In addition, CSP associates with every exhausted mode one or more unknowns which are

the "fast" variables responsible for the rapid decay of the mode. The diagonal dimensionless

elements of the NxN matrix a b (m) (no summation on m), denoted by Q(m; i), axe called the
m

radical pointers of the m-th exhausted mode on the i-th species. The i-th species is said to be a fast

variable or a radical for the m-th exhausted mode ifQ(m; i) is not a small mm_er in comparison to

un/ty. The species with the largest Q(m; i) is identified as the radical for the m-th exhausted mode

in this paper. If duplication occurs, the next largest pointer is used. The M relations fro(y), 0 can

be used to solve algebraically for these M radicals in terms of the others. If the "wrong species"

are identified as radicals, the solutions of the M relations are not accurate 14 and can not be trusted.
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Figures

Fig. 1a. Mass Fractions of CH3OH and CO2 vs. time.

1.5e-2

1.0e-2

5.0e-3

O.Oe+O
0.0000

Y[CH3OH] Y[CO2]

0.0500

t (sec)

0.1000



Appendix II 75

Fig. Ib. Mass Fractions of CO and H vs. time - showing comparison of results of full and

minimum sets discussed in §7.
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Fig. 2. Number of Exhausted Modes, M, vs. time.
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Fig. 3a.
15

Importance Index for CH3OH, Ik , vs. time - for reactions involving CH3OH.
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Fig. 3b. Importance Index for CH3OH, 115, vs. time - for reactions not involving CH3OH.
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Abstract

When very fast chemical reactions are present in the study of re-

acting flows, the so-called partial-equilibrium and the quasi-steady

approximations are frequently applied to simplify the chemical kinet-

ics source terms, to remove stiffness, and to reduce the number of

dependent variables. An important consequence of these approxima-

tions is that the mass diffusion term of the individual species must

be simultaneously modified. This paper presents a general and sys-

tematic derivation of the modifications, including that of the bound-

ary conditions, for massively complex chemically reacting flows using

computational singular perturbation (CSP). Simple examples shall be

used to demonstrate the theoretical concepts.

1 Introduction

In reacting flow problems, when vastly disparate chemical reaction time s-

cales are present, the partial-equilibrium and/or quasi-steady approximations

are frequently employed [11'[21'[31'[4]'[51 to simplify the chemical reaction source

*This work is supported by NASA Langley's Aerothermodynamics Branch, Space Sys-
tems Division.
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term. Theoretically, the mass diffusion terms in the PDE's are concurrently

affected by this simplification I6]. In the present paper, we shall present a

unified derivation of the simplified equations, paying particular attention to

the modified mass diffusion terms, including the modified boundary and ini-

tial conditions, under the assumption that the characteristic diffusion Pdclet

number of the problem is moderately largeIi.e, the flow is primarily con-

vection dominated, with diffusion being important mainly in relatively thin

boundary layers.

The present work is an extension of the theory of computational singu-

lar perturbation (CSP) [7]'[8]'[9]'[101. While the existing CSP theory has been

limited to a system of ODE's, the present extension includes spatial diffu-

sion and deals for the first time with a system of PDE's. Anticipating that

research in modern reacting gasdynamics will be strongly CFD oriented,

some special numerical issues will also be addressed. It will be shown that

the CSP methodology of refinement of basis vectors is directly applicable to

this class of PDE problems, allowing the algorithmic treatment of massively

complex convection-reaction-diffusion problems which contain exhausted fast

reactions.

We shall first work through a simple example using conventional method-

ology, then present a formal extension of the CSP theory. Finally, the CSP

methodology is applied to the example as a demonstration.

2 The General Statement of the Problem

We consider a reacting gasdynamics problem with N chemistry related un-

knowns. Let y be the N-dimensional column vector representing the un-

knowns. The dot product operator of this N-dimensional space shall be

denoted by "®" to distinguish it from the ordinary "." of the 3-dimensional

spatial dot operator. The general dimensional PDE system for ycan be ex-

pressed as follows:

Dy
Dt - g +d, (1)

where g(y) is the chemical reactions source term, d is the mass diffusion

term:

d = V. (D ® Vy), (2)
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and D is a N x N matrix of diffusion coefficients (usually diagonal). Appro-

priate initial and boundary conditions for all N unknowns are provided.

The chemical reaction source term g is usually expressed as the sum of

R terms each representing an elementary reaction:

R

s = s F', (3)
r=l

where s_ and Fare the stoichiometric vector and the reaction rate for the

r-th elementary reaction, respectively. In general, N # R, and in most

practical situations R is significantly larger than N. However, it should be

obvious that only N stoichiometric vectors are linearly independent. Hence,

the right hand side of (3) can always be expressed in terms of N linearly

independent s_'s serving as the "basis vectors" of the N-dimensional space.

In the modern age of CFD, solutions to such non-linear PDE problems

can be obtained numerically. The main numerical issues are: the much larg-

er number of unknowns in comparison to non-reacting gasdynamics, and the

"stiffness" of the equations introduced by the disparate chemical time scales.

So long as an adequate computing budget is available, these issues can be

resolved. However, the amount of physical insights which can be extracted

from numerical solutions is usually limited. In the present paper, we shall fo-

cus on the derivation of an approximate simplified non-stiff system of PDE's,

including its boundary conditions. The rationale is that the knowledge of

the approximate simplified equations, in addition to the solution itself, can

provide much more physical insights than otherwise available.

2.1 Preliminary Discussion

When the problem under investigation is sufficiently simple, the convention-

al approach is to first non-dimensionalize the dependent and independent

variables, obtain the dimensionaless governing equations, and identify the

relevent dimensionless P_clet numbers and DamkShler numbers. The initial

task of non-dimensionalization requires considerable skill; order of magni-

tude estimates must be made intelligently, and intuition and experience of

the investigator play a major role. In contrast, the subsequent task is rela-

tively straightforward: develop an asymptotic theory in the limit of certain

Damk5hler numbers being infinitely large---assuming that all other dimen-
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sionless parameters remain finite. In most applications, only "leading order"

results are needed.

In using CFD to compute for the desired solutions, the flow domain of

interest must first be covered by a suitable mesh or grid system. Let U be

the local characteristic velocity of the flow field, and h the local characteristic

cell width. The local characteristic flow time, rflow, is:

h

rfl°w - U" (4)

The local characteristic diffusion time, rdiff, is:

h 2

rdiff : D (5)

where D is a representative local diffusion coefficient. The ratio of rdi ff to

rflo w is the local P_clet number:

Uh

P_(h) -_ D (6)

which is h-dependent. In the present paper, we shall assume the P_(hmaz)

is moderately large so that globally diffusion does not dominate convection.

When a chemistry source term g is present, a number of chemical reac-

tion time scales are introduced into the problem. It is obviously that their

presence should have a significant impact on the grid system used for the

computations. At the present time, no general theory exists to guide the

selection of the appropriate local values of h. Usually, the grid is chosen by

the investigator based by some informed expectations of the behaviors of the

desired solutions. As a general principle, one would like to use as few grid

points as possible without sacrificing accuracy and spatial resolution. Usu-

ally, a global upper limit hmaz is placed on h so that the resulting numerical

solution is assured of adequate spatial resolution.

The issue at hand is how to deal with reacting flow problems in which

the characteristic time scales of some fast reactions are very, very small.
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3 A Simple Example

Consider a simple reaction system consisting of two elementary reactions and

two reactants A and B:

Reaction #1:
A + A _ B, (7a)

Reaction: #2:

A +-+ B. (Tb)

The mass diffusion coefficients of A and B are denoted by DA and DB,

respectively. The dimensional governing PDE for the two reactants are:

(8a)

(8b)

DA
- 2F 1 - F 2 + V. (DAVA),

Dt

DB _ F _ + F _ +V. (DBVB),
Dt

where D/Dt is the substantial derivative operator:
D 0

= +v.V,
Dt Ot

v is the flow velocity, and

F 1 = kl(A2-K1B),

F 2 -= k2(A-K2B).

(8c)

(8d)

(8e)

For the sake of simplicity, we shall assume that the rate coefficients kl, k2,

equilibrium constants K1,//'2 are constants, the flow is steady, and that the

characteristic P6clet number of the problem is moderately large so that (8a)

and (8b) are essentially parabolic. At the upstream boundary, initial condi-

tion is provided. At the "side" and downstream boundary surfaces, appro-

priate boundary conditions are provided.

We are interested in deriving the simplified PDE's and their modified

boundary conditions for this simple problem when one of the chemical reac-

tions is very fast.

For the sake of concreteness, we shall assume that reaction #1 is the fast

reaction.

The chemical reaction system also introduces time scales. When confront-

ed by a large and complex chemical reaction system, however, the above the-

oretical task is simply not viable. Instead, theoreticians usually proceed by
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intelligently applying ad hoc approximations which must be guided by intu-

ition and experience. The so-called partial equilibrium appvozimation (PEA)

requires that the theoreticians can somehow identify the fast reactions, the

so-called quasi-steady approximation (QSSA) requires that the theoreticians

can somehow identify the fast reactants (frequently called "radicals"). These

conventional techniques will be demonstrated in the next sections, with spe-

cial emphasis on the diffusion terms.

If M (linearly independent) reactions are assumed exhausted, the net re-

action rates of these M reactions are set to zero. In addition, M species are

judiciously identified as "radicals" and they are solve for in terms of the re-

maining N-M unknowns from the M algebraic equations obtained by PEA.

The subsequent derivation of the leading order simplified equations requires

some care, but is relatively straightforward. If M species can somehow be

identified as radicals, the so-called quasi-steady state appvozimation (QSSA)

is available. To apply QSSA, the convection term of the radicals are simply

negelcted.

If diffusive effects are absent, the simplification of this system of ODE's

can be handled by exisiting methods. The focus of this paper is to show how

diffusive effects should be handled.

For this simple problem, the dependent and the independent variables

can be intelligently non-dimensionalized, and the appropriate asymptotic

theory can be formally developed, the dimensional parameters are: L, the

characteristic length scale, U, the characteristic velocity of the flow field,

and DA, DB, kl, k2 and Ka, while 1(2 is dimensionless. The characteristic

convection time scale rflo w is:

rflo w =- L/U. (9)

We shall assume that all the diffusion coefficients have comparable magni-

tudes so that they can be represented by a single characteristic value D. The

characteristic diffusion time rdi ff is then:

rdiff =-- L2/D. (10)

In addition, we denote the characteristic time scales of reactions #1 and #2

by rl and r2, respectively. We shall be interested in the case when

n << r2 r1 ow< "dig" (II)
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The DamkShler number is rdiff/rchem. Then the P_:let number P_ for the

problem, defined as the ratio of rdi ff to rftow, is:

UL
p,---. (12)

D

By assuming that P_ is O(1) or larger, we exclude the case where diffusion

may be the fastest process in main domain of the problem. The issue at

hand is to derive a simplified governing PDE for this example problem when

reaction #1, which is somehow known to be much faster than reaction #2,

is already "exhausted." The modifications to the diffusion terms and the

modified boundary conditions are of particular interest.

3.1 The Partial-Equilibrium Approximation

The conventional derivation of the simplified PDE's for the example problem

using PEA would proceed as follows.

Reaction #1 is somehow identified as the fast reaction, and is assumed to

be exhausted after a brief transient period (away from boundary surfaces).

The exhaustion of reaction #1 implies that the net reaction rate F 1 is small

(but not zero) compared to either the forward or reverse rates which must

therefore balance each other approximately. By setting

F 1 = kl(A 2 - K1B) ,_ O, (13a)

which is an equation of state, an algebraic relation between A and B. We

can solve B in terms of A, or vice versa:

A 2
B _ -- (lab)

gl '

or

A _ _K-I'IB. (13c)

It is important to emphasize that, in the PEA procedure, (13a) (and therefore

(13b) and (13c))must never be substituted into (8a) or (8b)--because (13a)

is in fact obtained from (8a) or (8b) by taking the formal limit of k_ --* oo.

See (17) later.

Adding (8a) and two times (8b), we obtain, without approximation:

D

_-_(A + 2B) = F 2 + V. (DAVA) + 2V. (DBVB), (14)
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which does not contain F 1. Goddard [61 called A + 2B the reaction invariant

of reaction #1.

We can now eliminate either B or a by using either (13b) or (13c), re-

spectively. Using (13b) in (14) to eliminate B, we obtain:

D A K___.I F2 K1.._ + V. (DAsVA), (15a)
Dt Ka + 4A Ka + 4A

where DAB is given by:

DB (15b)
DAB =- D A -4- 4 A -_-_ ,

and F 2 is approximately

F 2
k2K_ K1

,_ _ A(-77-_ - A).

Alternatively, using (13c) in (14) to eliminate A, we obtain:

D B 2 v/-B .F 2

Dt v/-_l + 4V_

(15c)

where DBA is given by:

f--K--(_D A (16b)
DBA ---- DB + V'-B 4 '

and F 2 is approximately

f _ , k_g_v_( v_ ,/-g). (16c)
Ks

Equations (15a) and (13b), or (16a) and (13c) which are their equivalents,

are the simplified PDE's, obtained with the PEA method, valid in the flow

field where the "infinitely fast" reaction #1 is exhausted. They are not valid

in thin layers immediately adjacent to boundary surfaces where reaction #1

may be active. Hence, the initial and boundary conditions for (15a) or (16a)

must be modified. In particular, they are required to satisfy the equation of

state, (13a).

By comparing (8a) and (15a), we find:

K1 + 2AF2 2A V. (DaVA)- IQ V-(DBVB) (17)
F1 _ KI+4A KI+4A KI+4A

4¢-g
+ 4V_ v"

(DBAVB), (16a)
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which is also consistent with (8b) and (16a). Note that (17) does not contra-

dict (13a). Mathematically, it is a more accurate version of (13a)--the terms

on its right hand side are the next "higher order" terms which were neglected

in (13a) in comparison to the terms which contribute to F 1 on the left hand

side. Equation (17) shows clearly that when reaction #1 is exhausted, its

net reaction rate F 1 is not "zero;" in fact, its leading order value can be

accurately expressed in terms of the currectly active chemistry and diffusion

terms.

3.2 The Quasi-Steady State Approximation

The conventional derivation of the simplified PDE's for the example problem

using QSSA would proceed as follows. Either A or B must first be identified

as a "radical" somehow, and then the convective term in the corresponding

PDE is neglected in comparison to the chemical source and the diffusion

terms.

3.2.1 The QSSA applied to B

Neglecting the convective term in (8b), we solve for F 1 to yield:

F 1 _-F 2- V- (DsVB). (18)

Unlike (13a), Equation (18) is not an algebraic equation relating A and B;

instead, it is a PDE for B. Using (18) to eliminate F a from (8a), we obtain:

DA F2_, + V. (DAVA) + 2V. (DBVB). (19)
Dt

In order to make further progress, we must take advantage of the fact that

reaction #1 is known to be fast: the forward and reverse reaction rates

contributing to F 1 on the left hand side of (18) are much larger than the

terms on its right hand side. Thus, (18) is consistent with (13a), and therefore

(135), to "leading order." Using (135) to eliminate B from (19), we obtain:

DA F2-- ,_ + V. (DABVA) (20)
Dt

where F _ is given by (15c). Comparing (18) and (20) with (17) and (15a),

it is seen that QSSA when applied to B agrees with PEA only when the
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additional assumption

is satisfied.

K1 >> 4A (21)

3.2.2 The QSSA applied to A

Neglecting the convective term in (8a), we can solve for F _ to yield:

1 (DAVA).F 1 _ -1F2 + _V. (22)

Using similar procedures as above, we obtain:

_ F 2 + V. (DBAVB) (23)
Dt

where F 2 is given by (16c). Comparing (22) and (23) with (17) and (16a),

it is seen that QSSA when applied to A agrees with PEA only when the

additional assumption

K1 << 4A (24)

is satisfied.

3.2.3 Comments on The Conventional Derivations

The above analyses can formally be justified when klK1 >> k2K2, A =

O(K1/K_) and B = O(K1/K_), and that the characteristic P_clet numbers

are O(1) or larger. When the order of magnitude estimates are satisfied, the

PEA is valid when K2 = O(1), the QSSA applied to A is valid when Ks << 1,

and the QSSA applied to B is valid when K2Ufl. If the order of magnitude

estimates are not satisfied, then the validity of the results becomes uncertain

even when the inequality klK1 >> k2K2 is guaranteed.

For massively complex realistic problems, it is not possible perform the

formal asymptotic analysis. In its stead, the rationales justifying the approx-

imations used must come from the accumulated intuition and experience of

the investigators. While the validity of the approximations used can in princi-

ple be assessed by estimating or calculating the next higher order corrections,

this is seldom done in practice.
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3.3 The Modified upstream Condition

If the boundary condition specified at the upstream boundary is not con-

sistent with the exhaustion of reaction #1, a thin "initial" layer will exist

to allow the fast chemistry effects to run its course while the diffusive ef-

fects are expected to be negligible. The standard CSP "radical correction"

procedure [91 can be used to obtain the modified initial condition near the

upstream boundary.

3.4 The Modified Side Boundary Conditions

The simplified PDE's derived above are valid (after the brief initial layer)

over the whole physical space of interest except for thin layers adjacent to

boundary surfaces. The actual boundary conditions specified on the bound-

ary surfaces must be modified to yield the proper boundary conditions to be

applied at the edge of the thin layers.

Let T/denote the physical coordinate normal to the boundary surface, and

denote the physical coordinates which lie on the boundary surface. Within

a thin layer adjacent to a boundary surface, the PEA and QSSA are not

expected to be valid. Intuitively, the substantial time derivative term and

the contribution of reaction #2 to the chemistry source term are expected

to be small here---in comparison to that of reaction #1--and are therefore

negligible. In other words, reaction #1 and diffusion balance each other

here. Let the "leading order approximation" to A and B in this thin layer

be denoted by Abt and Bbt. We have:

c3 OAb_
0 _-, -2F 1 + -ff_n(DA--ff_-n), (25a)

0 OBbl- (25b)0 +F1+

which are now ODE's. The boundary conditions are:

Ab,(_,Tl=O,t ) = Ao(_,t), (given), (26a)

Bb,(_,71 = O,t) = Bo(_,t), (given), (26b)

A_(_,co, t) _, glBbl(_,oo, t), (26c)

where (26c) is applied at the edge of the thin layer symbolically located at

r/--, oo.
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The "boundary" value of A near the boundary surface (7/= 0 +) is iden-

tified with the value of Abt at the edge of the thin layer (7/= o0). In other

words, the boundary condition for (15a) is given by:

A(_,r/= 0+,t) _, Abt(_,oo, t). (27)

In the general case when DA and DB depend on Abt and Bbl, numerical

solution of (25a) and (25b) is needed to obtain the values at the edge of the

thin layer.

For the special case when DA and DB are constants, explicit analytical

results can be obtained. Adding (25a) and two times (25b), we have:

02
0 _ --_2(DAAbt + 2DBBb,), (28)

and its analytic solution which remains bounded as r/_ oo is:

DAAt,_ + 2DBBbt = DAAo + 2DBBo. (29)

Evaluating (29) at the edge of the thin layer and using (26c), we obtain

Abt(_, c_, t):

K1 -- 2

t) + 8DB(DAAo + 2DsBo)/K, - DA]. (3O)

which depends on Ao, Bo, DA and DB. The corresponding value of Bbs(_, oo, t)

is given by (26c).

4 Extending CSP to Include Diffusion

For a reacting flow problem with a massively complex chemistry source term,

progress can only be made if the investigator has sufficient experience and

insights to identify the appropriate PEA and QSSA approximations. Even

after such identification is made, The above derivation is viable only for

relatively simple systems because of the amount of algebra involved.

We shall extend the existing CSP methodology, which so far can only

deal only with a system of ODE's, to convection-reaction-diffusion problems

which are governed by a system of PDE's. The goal is to provide an unified

algorithm to derive the simplified PDE's for massively complex problems.
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4.1 The Basic Idea of CSP

The basic idea of CSP is to divide the N-dimensional g-space into a fast and

a slow subspace.

4.2 The Fast and Slow Subspace

Following the existing CSP theory, the column vector g, the chemical source

term, is formally divided into a fast and a slow components:

g _ g/a,_ + g,tO_. (31)

The fast component g.t,_t resides in a M-dimensional fast subspace which is

spanned by a set of trial (column and row) basis vectors am and b m satisfying
the orthonormal condition:

bm®an=5_, m,n=l,2,...,M. (32)

The question of how the trial fast basis vectors are to be chosen will be

addressed in the next sections. The value of M is determined by the user-

specified desired spatial resolution of the solution. For example, if the de-

tailed structure of the solution of length scale below A is not of interest, then

M is determined by the requirement that the local velocity times the slowest

of the fast time scales in giant be less than A. In reacting CFD codes, A

would be the local grid size.

Using the fast subspace projection matrix, Q(M), defined by:

M

Q(M) - _ arab TM, (33)
m=l

we can express gl,Ot in terms of M linearly independent modes:

gl_Ot =_ Q(M) ®g
M

-- Earnf m,

_=1

where fm is the amplitude of the m-th mode:

f_ = bin®g, m= l,2,...,M.

(34)

(35)

(36)
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The slow component g_ZO_ is simply the complementary component of g:

g"°_ = (I - Q(M)) ® g. (37)

The question to be answered is: what happens to fm (and therefore to glaa)

when the fast reactions are "exhausted?"

4.3 The Asymptotic Solution for fm

To answer the above question, we need to know what happens to fm following

a parcel of fluid. Taking the substantial derivative of fro, we have: 1

M

Dfm - __,A_(f n-f_)+bm®a ®d, m=l 2,... M, (38)
Dt ' '

rn=l

where

j _ 0g
- 0y' (N x N Jacobian matrix),

. Db _

A_ = (iD-_+bm®J)®a,, m,n=l,2,...,M,

= -by® (I-Q(M)) 6) g, m,n = 1,2,...,M.

(393)

(39b)

(39c)

Note that both the M x M matrix A T and the amplitudes f_ depend on

the fast basis vectors chosen. It is clearly highly desirable for f_ to be as

"small" as possible.

The theory of CSP generates from any reasonable set of trial basis vec-

tors a new set of refined basis vectors with the desirable consequences. The

refined (row) fast basis vectors, b_', are given by the CSP step #1 refinement

procedure:[9],[ 10]

M ,,. Db"
b_ = _rg/(---_+b'*®d), m=l,2,...,M, (40a)

n=l

and r_ is the inverse of AT. The refined (column) fast basis vectors, a_,, are

given by the CSP step #2 refinement procedure:

M Da,_ ,_
a_, = __, (- D---i-+ J 6)a_)ro,m, m = 1,2,...,M, (405)

1The considerable amount of algebra involved in the derivation of (38), (39c) and (40a)

is straightforward and is omitted here.
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where ro",m is the inverse of Ao",m. Note that these refined basis vectors auto-

matically satisfy:

and

b'_® a. = _. , m,n = l,2,...,M, (41a)

0 _tlb_®a,=_,, m,n=l,2,...,M. (41b)

In essence, the refinement procedure described above is simply an extension

of the so-called power method [11] for finding the largest (left and right) eigen-

vectors of a real matrix by iteration.

We shall use the CSP convention that superscript and subscript o indicate

that the appropriate CSP-refined basis vectors are used [9]. For example, the

new QO(M) is given by:

M

Q_(M) - _ a°bo _.
m=l

(42)

The eigen-values of the M x M matrix r_' have the dimension of time,

and can be interpreted as the time scales of the fast modes. In the theory of

CSP, all M fast time scales are assumed asymptotically small in comparison

to the currently active time scale. Let r(M) denote the slowest of the fast

time scales, and let r(M + 1) denote the fastest of the slow time scales which

is of the same order as the fluid mechanics time scale. The parameter e(M)

defined by:

r(M) (43)
e(M)= r(M + I)

is a measure of the time scale separation between the fast and slow subspace.

The present theory, following the CSP theory for ODE's, formally assumes

large time scale separation, i.e. e(M) << 1.

The right hand side of (1), g + d, can now be decomposed by using the

refined basis vectors:

DYD___[= g + h = (g°o'fa't + -od°'Y"'t_,+ (go°''t°'_ + -oa°"t°'_,, (44)

where

gO,l..t + doO,l..t = QoO(M) ® (g + d), (45a)
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M

= _ a°(f_ + by ® d),
m----1

]_ - b2® g, m= l,2,...,M,
gO,,tow
o +do °'°'°'°= (l-qo°(M))®(g+d),

(45b)

(45c)
(45d)

The issue at hand is to find the asymptotic solution for (gg,S..t + dO,l-,t), and

to show that it can be neglected in (44) after a brief initial transient.

Using (31), (35) and (37) in (45c), the fast mode amplitudes fo_ can be

expressed as:

f_, =fm _ f_, (46)

Using (46) to eliminate fm from (38), we obtain:

Df2 M
- y]_ A_(f_ - (f_oo - b_® d)), (47)

Dt m=1

where

M ,,Df_ Dbm d). (48)
S:_,_ - _ rg, L--D--/- + _G

_n----1

In contrast to f_, which is not guaranteed to be small in the small e(M)

limit, f_,oo is formally O(e(m)) in the small e(M) limit provided that d is of

order unity.

Assuming that all eigen-values of A_ are essentially negative, we can

conclude that the leading order asymptotic solution to (47) is:

]'f _ fo,_oo - b_® d, m = l,2,...,M, (49)

which is valid after a brief initial transient (following the trajectory of a fluid

parcel). Using (49) in (44) and (45b), we obtain:

and

Dy M
y_ a_f_,_¢_ + (I- Qo°(M)) ® (g + d). (50a)

Dt m=1

M

gO,l.., + dO,l..t _ y_. aOfo,,_oo. (50b)
m_._l

Both (50b) and (50a) are valid after the brief initial transient layer.
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By neglecting fo'?,oo in the small e(M) limit from (50b) and (50a), we
obtain:

Dy
(I- qo°(M)) ® (g + d). (51a)

Dt

g°df°'* + d°o'fa't _ O, (51 b)

The solution of (51a) automatically satisfies (51b) for t > to in the Lagrangian

sense, provided that it is satisfied at t = to.

By neglecting f_oo in the small e(M) limit from (49), we obtain:

fo_-bo_Od, m=l,2,...,M. (52)

However, except inside a very thin reaction-diffusion layer adjacent to bound-

aries, (bo_® d) in (52) is itself a "higher order" term in comparison to the

individual terms which contribute to fo_. Hence external to this thin lay-

er, (bo_® d) can be neglected to obtain M algebraic relations between the

components of y:

fo_ m, 0, m = 1,2,...,M, (53)

which are called equations of state in the theory of CSP. However, this higher

order term (b_® d) must be kept in (52) in the derivation of (515) and (51a)
above.

A variant of (50a) was derived by Maas and Popetl21 who called their

approach the method of intrinsic low-dimensional manifold (ILDM)[131. In-

stead of the CSP-refined basis vectors, they used the local fast eigen-vectors

of J to evMuate the fast subspace projection matrix. In addition, they chose

not to use (37) for the evaluation of go°'t°_, and handled the right hand side

of (50a) differently. A discussion of their approach can be found in published

comments which followed the paper in reference [12].

The remaining question to be resolved is the modified boundary condition

for (50a).

4.4 The Reaction-Diffusion Layer

Immediately adjacent to physical boundaries, the user-specified boundary

conditions may not be consistent with (53), and the fast modes are in gen-

era/ active there. A very thin layer therefore exists in which mass diffusion
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balances fast chemistry. We shall denote the solution in this thin layer by

y_t, the local coordinates on the boundary surface by _¢ and r/ as defined

previously.

In this reaction-diffusion layer, we rewrite (1) as follows:

d = -g + DYb------A (54)
Dt"

The diffusion term d can be approximated by:

oyb, (551d,_ (DE) Or/"

The right hand side of (54) can be decomposed into its fast and slow com-

ponents using the refined basis vectors:

0 -_ -'-_,oDYbt_o,fast ---_/oDYbt_o,,to,,,_--_(D ® ) _ (-g + + (-g + . (56)

Neglecting the slow component and the convective term in the fast compo-

nent, we obtain the leading order governing equation for the thin reaction-

diffusion layer:

_-_(D E) OYb')_ -go °'la't. (57)Or/

Equation (57) is a system of N second order ODE's and it poses a two-

point boundary-value problem. The "initial" value for Ybt at 77= 0 is known

from the original boundary condition. Since (57) is invariant under the trans-

formation 7/_ -r/, "decaying" and "explosive" modes will appear in pairs.

The CSP initial-value algorithm can be adapted to handle this special class

of "infinite horizon" boundary layer problems[14]--the explosive modes can

be explicitly suppressed using CSP methodology.

The "thickness" of the layer, A_, is of the order of O(v/Dm_xr(M)) where

D,na_ is the largest eigen-value of D. It can be considered a "thin" layer

whenever At/ << L where L is the characteristic length scale of the given

physical problem. The edge of the layer, denoted by t/ ---* oo, is located

at the point when all M fast modes are declared exhausted. The solution

of the thin layer equation, (57), remains constant beyond this point, and is

identified as Ybt(_, oo, t).
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The boundary condition for (50a) is:

= 0%0 = t) (5s)

It is perhaps interesting to note that the value of Yu(_, c¢, f) cannot be ob-

tained by the so-called radical correction [91'[10] using the refined basis vectors

obtained for the PDE's--unless all mass diffusion coefficients are identical.

4.5 The Initial Transient Layer

In the initial transient layer, the effect of mass diffusion is generally negligible

and therefore can be treated by the radical correction as demonstrated in

reference [10].

5 The Simple Example Revisited

To get started, we can use either the fast eigen-vectors of J or the chemical

stoichiometric vectors of the (guessed) fast reactions as our trial fast basis

vectors. For our simple example, we consider reaction #1 to be the fast

reaction:

al = [-2,1] T, b 1 = [-1,-11. (59)

The CSP step #1 refinement yields:

1
blo - [-2A, gl].

K1 + 4A

The CSP step #2 refinement yields:

a_ _ [-2 + 0(41)), 1 + O(e(1))] _.

(6O)

(61)

where the time scale separation parameter e(1) is proportional to k2/kl(K1 +

4A). It is seen that the refined a_ can be approximated by the trial al in

the limit of kl --* co when e(1) is a small parameter. This will always be the

case whenever the trial column basis vectors have been "judiciously" chosen.

In fact, the closeness of a,,, and a ° can be used in general as a "test" of how

good the original choice of the trial vectors were. In practice, one should
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proceed with the CSP analysis only when am is a good approximation to a,_.

It can easily be verified that if the trial basis vectors were randomly chosen,

the refined basis vectors will rapidly converge--if e(M) is small--after a few

full cycles of CSP refinements.

For the sake of simplicity, we shall omit here the O(e(1)) term in the fast

subspace projection matrix:

1 ( 4A -2K1) (62)Q:(1)_KI+4A -2A K1 "

The corresponding slow subspace projection matrix is:

1 (K1 21Q) (63)I-Q°°(1)_KI+4A 2A 4A "

The analytical developments in §3 which assumed reaction #1 is fast can

readily he reproduced by appropriately using these two projection matrices.

For example: (15a) is the first component of (51a), (13b) is (53) with M = 1,

(25a) and (25b) are "leading order" versions of (57) with N = 2.

6 Discussion

Mathematically, the above general theoretical development is an asymptotic

analysis of a singularly perturbed problem in the limit of e(M) ---* 0 where

¢(M) is the ratio of the slowest exhausted fast time scale to the current time

scale. Unlike the original CSP theory which is capable of including higher

order terms by recursive applications, the present extension for PDE's is

limited to only the leading order approximation. In return for this concession,

the governing ODE's in the very thin reaction-diffusion layer are cleanly

decoupled from the PDE's governing the rest of the flow field.

The value of f_oo as given by (48) should be monitored in the course of

the computation. Its value should be "small," and may be included in (50a)

and (50b) to improve the accuracy of the solution. If this small correction

term is found to be significant, then one or more of the exhausted fast modes

is reviving and the value of M should be decreased. In general, the updating

of M along a fluid streamline can be dealt with in the standard manner.

When an energy equation is included in the original model, then the term

representing thermal conduction must also be appropriately modified [9].
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In a viscous boundary layer near a solid boundary, the flow field velocity

is small as a consequence of the no-slip condition, and increases rapidly with

7/. In addition, the temperature profile in a thermal boundary layer is often

also rapidly varying. As a consequence, the value of M and the identifica-

tion of the fast reactions are expected to vary significantly across the viscous

and thermal boundary layers. In the very thin reaction-diffusion layer, how-

ever, the flow velocity does not enter and the temperature is expected to

be approximately the wall temperature. While theoretically the identifica-

tion of the fast reactions can change across this layer, no strong variation

is expected. In the present presentation, we have tacitly made the ad hoc

assumption that the reduced reaction system representing _o,I,_,tt_o at the edge

is valid throughout the very thin reaction-diffusion layer.

An important assumption in the present theoretical development is that

all eigen-values of AT are essentially negative. In other words, the fast modes

are assumed to be decaying modes. If A T does contain positive eigen-values,

then the use of (49) will also suppress the fast "explosive modes." Such

modes are physically essential and must be "unleashed" to describe certain

important processes such as the ignition of flames. In addition, when A T

contains essentially imaginary eigen-values, then the use of (49) will also

suppress the fast "oscillatory modes." The proper treatment of fast explosive

or oscillatory modes which must not be suppressed is a difficult matter and

is not yet adequately addressed by CSP at this time.
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Abstract

The Computational Singular Perturbation (CSP) method of sim-

plified kinetics modeling is reviewed with emphasis on the justification

of the methodology. A simple example is first worked through using

the conventional methodology of partial-equilibrium and quasi-steady

approximations, and then treated in some detail using CSP.

1 Introduction

When one is confronted with an unfamiliar problem in chemical kinetics, the

traditional first step is to identify the relevant chemical species and the impor-

tant elementary reactions which occur among them. The resulting "complete

model" of the reaction system is usually further simplified to take advantage

of available approximations. For sufficiently simple problems, conventional
[11,[2],[31,[41,[5lanalytical methods can be used . In most situations, the success

of the resulting simplified model is measured not only by its quantitative

predictive capability, but also by its simplicity--the fewer superfluous terms

the better. Generally speaking, approximate analytical results are highly val-

ued because of the insights they can provide when inspected by a competent

*This work is supported by NASA Langley's Aerothermodynamics Branch, Space Sys-
terns Division.
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theoretician. But when the reaction system is massively complex, this is not

a practical option.

Recently, databases containing extensive, reliable and up-to-date data

for certain reaction systems are available. Computations using complete

models from such databases can now be routinely carried out. In this new

computational era, it is no longer necessary to pick out only the relevant

chemical species and the important elementary reactions--because the pres-

ence of benign superfluous terms in the formulation is not a problem. An

option increasingly available to the modern theoretician is to first generate

a complete model numerical solution, examine the resulting data to discern

significant and interesting causes and effects, making additional diagnostic

runs if necessary, and then try to propose simplifications and approxima-

tions. Why do theoreticians still care about simplified approximate models

when double-precision numerical solutions to the complete model are easily

available? The reasons are: physical understanding and "stiffness." A theo-

retician would like to be able to make general statements about the problem

in addition to showing color slides of the numerical solutions. The observed

behaviors of the computed solutions need to be described in terms of fa-

miliar concepts, such as chain-branching, chain-termination, ignition delay,

building up of the radical pool, heat release etc. In particular, theoreticians

would also like to be able to identify the rate-controlling reactions (for the

chemical species of interest in the time interval of interest), fast reactions for

which rate coefficients do not need to be known accurately, and superfluous

reactants and reactions which need not be included at all. In addition, the

vast disparity of time scales which is responsible for the simplifications and

approximations is also responsible for stiffness [61, a generally undesirable at-

tribute of the governing differential equations from the computation point of

view.

The theory of computational singular perturbation E71'[81'[91'[101'[111'[121 (to

be referred to as CSP here) exploits the power of the computer to do simpli-

fied kinetics modeling. In essence, CSP is a systematic mathematical proce-

dure to do boundary-layer type singular perturbation analysis. While it can

be used to obtain analytical results for simple problems, it is designed to be

used for massively complex problems using computations. A CSP computa-

tion not only generates the numerical solution of the given problem, but also

the simplified equations in terms of the given information. Most interesting

questions about the reaction systems can be answered merely by inspection
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of the numerical CSP data.

The present paper is a review of the theory of CSP. The basic CSP re-

sults are summarized, and are applied to a simple example to illustrate the
essential features.

2 The Mathematical Problem

We shall consider a spatially homogeneous reaction system consisting of R

elementary chemical reactions. The total number of unknowns, which in-

clude concentrations of the chemical species and other state variables such

as temperature and total pressure, is N. We shall represent the N unknown-

s by a N-dimensional column vector, y = [yl,g2,...,yN]r. The governing

equation for y is a system of quasi-linear ODE:

dy
= g(y), (2.1)

where g is the sum of contributions from the R elementary reactions:

R

g _= _ srFr(y), (2.2)
r=l

and s, and r*(y) are the (generalized) stoichiometric vector and the reac-

tion rate of the r-th elementary reaction, respectively. The value of R may

be greater, less than, or equal to N. We shall call (2.2) the physical repre-

sentation of g, because each additive term can be satisfactorily explained by

the investigator who formulated the problem.

Usually, an investigator is interested only in certain special species, each

with a different accuracy requirement and perhaps in a different time in-

terval. In many cases, not all the initial conditions needed to compute the

solutions are known, and many rate constants needed in the computations

are only educated estimates. The mathematical problem is to derive the sim-

plest model of the reaction system consistent with the user-specified accuracy

requirements.
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3 Some Definitions

When the forward and reverse reaction rates of a single or a group of fast

reactions are in approximate balance, we say the reaction or the reaction

group is in partial-equilibrium. When the production and destruction rates

of a particular species are in approximate balance, we say the species is

in quasi-steady state. In either case, an approximate algebraic relation is

obtained between components of the y vector. Such relations, which do not

contain free parameters, shall be called equations of state. In many cases,

species in quasi-steady state are chemical radicals, but not always.

When M equations of state are available, they can be used to selectively

solve for M unknowns in terms of the others--in so doing the need for M of

the ODE's is eliminated. Which M unknowns should be solved for in terms of

others, and which M ODE's should be discarded? Lam [12] provides explicit

theoretical guidance to make these choices, and calls the M unknowns CSP

radicals, or simply radicals for short, when they can be accurately solved

for from the M equations of state. When used in this CSP context, the

term radical carries a special meaning distinct from the context of chemical

structure. In most situations, a CSP radical is also a chemical radical, and

vice versa. But it is not always true. The identification of CSP radicals is

done via a "radical pointer" which shall be demonstrated later.

Frequently, additional (exact or approximate) algebraic relations between

the components of the y vector may exist. The conservation law of atomic

species is one such example. Such relations are distinguished from the above

equations of state by the presence of free parameters which are determined

by initial conditions. Following Lam [121, we shall call all such relations con-

servation laws.

4 A Simple Example

We shall use a simple hypothetical reaction system 112] to illustrate the issues

involved.

Let the state vector be y = [A, B, C] T where A and B are chemical

concentrations and C is temperature. The reaction system consists of three

elementary reactions:

reaction#l : A + A _ B, (4.1a)
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reaction#2 : A _ B,

reaction#3 : B + B _-- A.

The (generalized) stoichiometric vectors and the reaction rates are:

sx = [-2, 1, AH1] T, FI=kI(A2-KxB),

s2- [-1, 1, AH2] T, F2=k2(A-K2B),

s3 = [1, -2, AH3] T, F 3= k3(B 2 - K3A).

(4.1b)

(4.1c)

(4.2a)

(4.2b)

(4.2c)

where the reaction rate coefficients kl, k2, k3 and the equilibrium constants

K1, K2,/(3 are known and--for the sake of simplicity--their dependence on

C is assumed negligible. The heats of reaction (with the proper units) for the

three reactions are denoted by AH1, AH2 and AH3, respectively. We shall

find it useful to separately identify the forward and reverse reaction rates as

follows:

F" = F" ...,+-F _, r=l,2, R, (4.3)

where F_. and F _ are both positive.

The system of ODE is:

dy = SlF1 + s2F2 + s3F3 (4.4)
dt

which can be written out as follows:

dA

dt - 2F' - F 2 + F 3, (4.5a)

dB
- F 1 + F 2 - 2F 3 (4.5b)

dt
dC

d--[ = AHIF1 + AH2F2 + AH3F3" (4.5c)

To make things concrete, the rate coefficients are given numerical values:

k_ _ 104cc/mole-second, K1 _ 1.1 × 10-2mole/cc, (4.6a)

k2 _ 10-1/second, 1/'2 _ 1.1 x 102, (4.6b)

k3 _ 104cc/mole-second, K3 _ 0.8 × 10-Smole/cc, (4.6c)

and

AH1 _ +1.1 x 104cc-°K/mole, (4.7a)

AH2 _ +1.0 x 105cc-°K/mole, (4.7b)

An3 _ -2.9 x 10Scc-°K/mole. (4.7c)



Appendix/V 110

The initial conditions are also given numerical values:

A(0) ,-_ 1.5 x 10-4mole/cc, B(0) _ 0.1 x 10-Smole/cc, C(0) _ 300°K.
(4.8)

The investigator is interested in A(t), accurate to two significant figures, after

the first few seconds up to a few minutes.

Experience and intuition can play no role here because the problem is

hypothetical, and indeed may not even make "chemical sense." Note that

detailed balance would require/(3 -- K1/(K2) 3, thermodynamics would re-

quire AHa = AH1 - 3AH_, and the Law of Mass Action would require sT

and F * to be consistent. The data provided do not satisfy some of these re-

lations exactly--they were chosen to demonstrate that the techniques under

discussion are completely mathematical, and do not require consistency with

constraints "external" to the given initial-value problem.

Because this example is sufficiently simple, a conventional asymptotic

analysis can be performed--provided that the dependent and independent

variables can be intelligently non-dimensionalized, and a small dimensionless

parameter can be identified. The reader can readily confirm that even for

this simple problem the task of non-dimensionalization of variables is not

straightforward. Consequently, the conventional method usually proceeds

with a dimensional formulation without the benefits of dimensionless param-

eters. Progress is made via intuitive ad hoc judgment on the speed rankings of

the elementary reactions, and the use of partial-equilibrium or quasi-steady

approximations must follow certain special procedures. We shall illustrate

the conventional methodology in the following section.

5 The Conventional Methodology

We shall demonstrate the partial-equilibrium approximation first, followed

by the quasi-steady approximation.

5.1 The Partial-Equilibrium Approximation

For the example problem, a competent investigator will (correctly) conclude

that reaction #1 is fastest, reaction #2 is next, and reaction #3 is slowest.

In the time period of interest, it is expected that reaction #1 will have
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exhausted itself, reaction #2 is the rate-controlling reaction, and reaction

#3 is essentially dormant.

Reaction #1 is exhausted: The partial-equilibrium approximation for re-

action #1 consists of setting the net reaction rate of reaction #1 to zero.

The following equation of state is obtained:

F 1 = kl(A 2 - K1B) _ O, (5.1)

Note that (5.1) contains no free parameters. One may use it to solve

A in terms of B, or B in terms of A.

Equation (5.1) must be handled with care---it must never be substi-

tuted directly into the original system of equations. If this advice is

not heeded and (5.1)is substituted into (4.5a), (4.55) and (4.5c), the

resulting equations are simply wrong. This is because the small net

reaction rate of an exhausted fast reaction is in general competitive

with the currently active slower reactions. In other words, (5.1) is only

adequate to be used as an equation of state, but is inadequate to be

used in the original equations. See (5.10) later.

Reaction #3 is dormant: The contribution by reaction #3 to (4.4) is neg-

ligible and need not be included in the time period of interest. It is

emphasized that reaction #3 being negligible does not mean F 3 _ 0.

Hence, B 2 ,_ K3A is not valid and must never be used. By neglecting

s3F 3 from (4.4), one can show that:

(AH1 - AH2)A + (AH, - 2AH2)B + C _ Constant. (5.2)

The

which is a (temporary) conservation law. An astute investigator will

be able to attribute the physical meaning of "conservation of total

energy" to (5.2). If one were interested in the reaction system over a

time period of the order of hours, reaction #3 would not be negligible

and (5.2) would not be valid.

Simplified Model: The procedures recommended by Williams Ill to

follow-up the partial-equilibrium approximation proceeds as follows.

First, one of the ODE in the system of equations is used to eliminate

F 1 from the rest of the equations. For example, (4.5b) can be used to
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eliminate F' from (4.5a) and (4.5c). These two equations are then sup-

plemented by (5.1) differentiated with respect to time. The simplified

model is obtained by solving for dA/dt, dB/dt and dC/dt from these

three equations. We obtain:

dA

dt

dB

dt

dC

dt

Kx F2 3KI F3
K, + 4A K;7-4A '

2A 6A

KI + 4A F2 KI + 4A F3,

[AH_ - AH1 (K1 + 2AK,
AU 12( K' + A)

+[AH3 + ,..,,,,_ _ __-_ )]F3.

(5.3a)

(5.35)

(5.3c)

Note that either (5.3a) or (5.3b) can be replaced by the algebraic e-

quation of state, (5.1). Since F a does not appear in this simplified

model, this system of ODE is no longer stiff (regardless of how large

kl is). It can easily be verified that its solution satisfies (5.2) when

(AH1 - 3AH2 - AH3)F 3 is negligibly small.

The New Initial Conditions: The initial conditions at t --, 0 + are no

longer given by (4.8), since they must satisfy (5.1). A detailed analysis

will show that reaction #2 can also be considered dormant in the brief

initial transient period. Hence, in addition to (5.2), A + 2B is also

approximately conserved is this period. Using these results, we have:

A(0 +) ,_ A(0) + 2(B(0)- B(0+)) = 1.46 x 10 -4, (5.4a)

A2(0+) - 1.94 × 10 -6. (5.4b)
B(0+) _ K1

The value C(0 +) _ 301.04 can be found from (5.2) applied between
t = 0 and t = 0 +.

5.2 The Quasi-Steady Approximation

Alternatively, an investigator may choose to proceed with the quasi-steady

approximation instead of the partial-equilibrium approximation.
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The quasi-steady state approximation requires that certain species be

chosen as "radicals." If B is chosen to be the radical, we neglect dB/dt from

(4.5b) to yield the following equation of state:

F 1 _ -F _ + 2F 3. (5.5)

Unlike (5.1), this equation is substituted directly into (4.5a) and (4.5c) to

eliminate F 1. We obtain:

dA F2 (5.6a)_ -- 3F 3,
dt
dC
__ ,._ [AH2- AH1]F 2
dt

+[AH3 + 2AHllF 3, (5.6b)

These equations agree with (5.3a) and (5.3c) but only in the Kx >> A limit.

The radical, B, is to be solved from (5.5) in terms of A.

If K1 << A, then A should be chosen as the radical instead, yielding:

F 1 _ (-F 2 + Fz)/2. (5.7)

Substituting this equation into (4.5b) and (4.5c) to eliminate F x, we obtain:

(4.5c) to eliminate F 1. We obtain:

dB

dt
dC

dt

F2 3 z (5.8a)-_F ,

[AH_ - 1AH1]F2

+[AHz + 1AH_]FZ, (5.85)

These equations agree with (5.3a) and (5.3c) but only in the K1 << A limit.

The radical, A, is to be solved from (5.7) in terms of B.

Whenever K1 = O(A), the quasi-steady approximation simply cannot be

used[12],[131.

According to this presentation, the quasi-steady approximation is seen to

be a special case of the partial-equilibrium approximation. See §5.4 later.
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5.3 How Good Are These Results?

The analytical results obtained above are only the leading order term of an

asymptotic theory valid in the limit of kl ---* oo. How good are they for the

"real" problem at hand? For the example problem, the small dimensionless

parameter e for an asymptotic theory turns out to be either k2K2/klK1

or k3/(klg_), whichever is larger. For the given rate data, we have e =

k2K2/kl K1 ,_ 10 -1, which is barely adequate to provide one significant figure

in the answers. More seriously, if the order of magnitudes of the initial data

A(0) and B(0) are significantly different from (4.8), these asymptotic results

may be totally misleading.

5.4 The Exhausted Fast Reaction Rate

We have shown that the equation of state obtained by the partial-equilibrium

approximation, (5.1), must not be substituted directly into the original equa-

tions because it has inadequate accuracy, while the equation of state obtained

by the quasi-steady approximation, (5.5) or (5.7), can be more freely used--

with the caveat that its validity depends on the relative magnitude of A

versus K1. The question is: can a better approximation be found for F 1 for

large time than either (5.1), (5.5) or (5.7)?

Differentiating F 1 with respect to time, we obtain:

dB
dFldt - k_(2a_t - IQ--_)

= -k_(K_+4A)[F'-F_],

where
2(Ka +

F_ = _Ka+2AF_+ A) F3"
Kx + 4A K1 + 4A

(5.9a)

(5.9b)

1
,'(1) = ..,. (5.11)

kl(K1 + _i2i]

It is now clear what F 1 does as time marches on. Initially, F 1 decays expo-

nentially with characteristic time scale O(l_'(1)[), but eventually it follows F_

which evolves with a slower time scale. The long time asymptotic solution

of (5.9a) is, for t >> O(Ir(1)l):

F_ + r(1)dFx + ..., (5.10)F 1

where
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In other words, the leading approximation for F 1 is F_ when reaction #1

is exhausted. If F 1 _-, F_ is substituted directly into (4.5a) and (4.5c), we

will indeed recover (5.3a) and (5.3c), the partial-equilibrium results obtained

earlier. Hence, F 1 _ F_ is valid without restriction on the relative magni-

tudes of KI and A; it is thus a superior equation of state than either (5.1),

(5.5) or (5.7), and agrees with them in the appropriate limits.

6 The Theory of CSP

The present section explains the CSP procedures and provides intuitive jus-

tifications for their validity.

6.1 Observations on the Conventional Methodology

The most important information needed by the conventional methodology is

the speed ranking of the reactions and the identification of the CSP radical-

s. Once the fast reactions are somehow identified, and the radicals chosen,

the partial-equilibrium and the quasi-steady approximations are available to

make further progress--with appropriate caution on the unreliability of the

latter. The derivation presented in §5.4 is a new and different way to make

progress--it does not need to identify the radical and it clearly yields the

most accurate equation of state, F 1 _ F_. All it needs is assurance that

reaction #1 is the fastest.

The theory of CSP provides a systematic way to identify the fast reac-

tions. In addition, it generalizes the procedures in §5.4 to find the exhausted

fast reaction rates for massively complex reaction systems.

6.2 Basis Vectors

The vector g contains all the physics of the problem, and is usually given by

the investigator formulating the problem using the physical representation,

(2.2).

In general, an N-dimensional vector may be expressed in terms of any set

of N linearly independent basis vectors [141. CSP exploits the theoretician's

prerogative to express g in an alternative representation, and look for basis

vectors with special properties.
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Let ai(t), i = 1,2,..., N, be a set of N linearly independent column basis

vectors. The set of inverse row basis vectors, hi(t), i = 1,2,...,N, can be

computed from the orthonormal relations:

b i®aj=_5J, i,j=l,2,...,N, (6.1)

where ® is the dot product operator of the N-dimensional vector space.

The column vector g can now be expressed as:

N

g = _ aif', (6.2)
i=1

where
R

fi_bi®g _ i ,"= B,F, i=l,2,...,N, (6.3)
r=l

and

B_-=b _®s_, i=1,2,...,N. (6.4)

Each of the additive terms in (6.2) represents a reaction mode, or simply

mode. The amplitude and direction of the i-th mode are fl and ai, respec-

tively. Eventually, CSP provides an algorithm to find the "best" set of basis

vectors for the derivation of the simplified models.

The physical representation of g uses the physically meaningful (and time-

independent) stoichiometric vectors as the default column basis vectors. For

our example, the default set is:

al = sl = [-2, 1, AHI] T, (6.5a)

a2 = s2=[-1, 1, AH2] T, (6.5b)

a3 = Sa = [1, -2, AH3] T. (6.5c)

Using this set, the inverse row vectors can easily be computed:

where

b' = [2AH2 +AH3, AH2+ AH3, 1]/H, (6.6a)

b 2 = [-2AH1 - AH3, -AH1 --2AH2, -3]/H, (6.6b)

b 3 = [-AH, +AH2, -AH1 + 2AH2, -1]/H, (6.6c)

H = AH1 - 3AH2 - AH3. (6.6d)
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Using the given input numerical data, we have:

H = 103cc-°K/mole. (6.7)

Inspire of this quite respectable dimensional value, H is actually very nearly

"zero," because it is a small number in comparison to AH1, AH2 and AH3.

For "sufficiently small" H, an alternative a3 must be provided. We shall take

advantage of H -¢ 0 here and proceed with caution.

It is straightforward to verify that at t = 0, we have:

fl = b 1 ® g = F 1 = 2.14 x 10-4mole/cc-second, (6.8a)

f2 = b 2 ® g = F2= 1.39 x 10-Smole/cc-second, (6.8b)

f3 = b 3 ® g = F3= -1.19 x 10-Smole/cc-second. (6.8c)

6.3 The Speed Ranking of the Modes

Differentiating (6.3) with respect to time along a solution trajectory y(t), we

obtain:

df_ u
d-T = _ A_fj' i = 1,2,...,N, (6.9)

i=l

where

"dbl b i J] aj, ..,
A_ - [-_-+ ® ® i,j = 1,2, . N, (6.10a)

j _ 0g _ N x N Jacobian matrix. (6.10b)
- 0y

The non-linear nature of the original problem is manifested by the fact that J

is in general not a constant matrix. At any moment in time, the eigen-values

of J can be computed. For problems arising from chemical kinetics, they are

usually essentially real--when the problems are of the boundary-layer type.

The reciprocal of an eigen-value, called the time scale, has the dimension of

time, and shall be denoted by r(i). Ordering them in increasing magnitudes,

we have:

It(l)[ < ... < Ir(i)l < ... < Ir(m)l, (6.11)

which provides an approximate speed ranking of the "eigen-modes."

The question what is an ideal set of basis vectors now has an obvious

answer: ideal basis vectors should diagonalize Aj, thereby uncoupling all the
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modes. This is the standard strategy for analyzing linear problems, but it

obviously needs some modifications for non-linear problems because there is

no finite algorithm to diagonalize A_. A full discussion of this subtle point will

be given in a future paper. When the set of basis vectors used is non-ideal,

the modes are coupled, and each mode will not have a distinct characteristic

time scale. As shown in our example in §5.4, the fastest mode F 1 evolves

with its own characteristic time scale [r(1)[ only initially. As it becomes

exhausted, it eventually follows F_ which evolves with the characteristic

time scales of the slower modes. This mode mixing is the price we pay for

not diagonalizing A_, and is an intrinsic issue of non-linearity which must

be dealt with: the fast modes behave as slow modes when they are near

exhaustion. Viewed in this light, the task of deriving simplified models is

reduced to finding basis vectors such that the fast modes mix with the slow

modes as little as possible. From the pragmatic point of view, however,

it is not really necessary to uncouple all the modes; it will be sufficient to

uncouple the fast modes from the slow modes approximately--so that the

residual coupling can be neglected in accordance with some user-specified

accuracy threshold. Mode mixing among the fast modes or among the slow

modes causes no difficulty and can be tolerated.

6.4 The Classification of Fast and Slow Modes

First of all, we need a more precise classification of fast and slow modes.

Usually, an investigator has a definite idea on the desired time resolution At
of the solutions--events whose time scales are below At are not of interest.

Hence, the group of M modes which satisfy:

[r(m)[<At, m=l,2,...,M, (6.12)

are considered fast modes, and all others are the slow modes. The fastest

group of active slow modes are the rate-controlling modes. Slow modes with

negligible amplitudes are called dormant modes.

If one is interested in all time scales, then At - r(M + 1). When time is

measured in units of At, the fast modes should all be nearly exhausted. We

shall deal with a precise definition of exhaustion later. In §5.4, we showed how

to obtain the "asymptotic" large time solution for F 1. We shall generalize

the procedure to an arbitrary fast mode below.
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6.5 The CSP Refinement Strategy

CSP does not attempt to diagonalize A_. It assumes that at any moment

in time an intelligent set of trial basis vectors is available, and provides an

algorithm to refine it. The strategy is to provide a systematic, programmable

algorithm which generates a new A_ which is more block-diagonal than before.

For non-linear problems, the eigen-vectors of J are time-dependent, and

thus they do not diagonalize A_. They are, however, excellent trial basis

vectors. As demonstrated in the previous sections, the conventional method

uses the default stoichiometric vectors and requires a good guess of the speed

ranking of the modes.

The CSP theory uses the ratio

r(M)

eM(t)= r(M+l)
(6.13)

as a small dimensionless parameter, and develops the refinement algorithm

by an asymptotic analysis in the small eM limit. Physically, eM is a measure

of the time scale separation of the fast and slow modes. Each application of

the CSP refinement procedure will depress the magnitude of the off-diagonal

blocks of A_ by O(eM).

6.6 The CSP Refinement Procedure

We shall assume that at any moment in time on a solution trajectory, the

value of M is known, and a set of trial basis vectors for the fast modes are

given:

am, b m, m = 1,2,...,M. (6.14)

With only the fast basis vectors available, we can compute for the M × M

upper-left block of A_, denoted by w n.m"

db"

m '_ (---_- b m J) m, = ,w_ -- A n = + ® ® an, n 1,2,... M. (6.15)

The inverse of w_ shall be denoted by rff:

M M

_ n a m

nt=l nt=l

m,n = 1,2,...,M. (6.16)
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We shall mark the refined basis vectors and all entities evaluated with refined

basis vectors by either a superscript or a subscript o, or both.

To refine the b m row vectors, we use the so-called step #I procedure:

M db n

bo_ = _ r_(--_-- + b" ® J), m = 1,2,...,M, (6.17a)

oam = a,,,, m = 1,2,...,M. (6.17b)

The step #1 procedure depresses the upper-right M x (N - M) block of

A i- it makes the fast modes "purer" by weakening their couplings with the
slow modes. To refine the a,, column vectors, we use the so-called step #2

procedure::

bo_ = b TM, m = 1,2,...,M, (6.18a)

M dam
a_, = _(---_- +J ® a,)r_, m = 1,2,...,M. (6.185)

n----.1

The step #2 procedure depresses the lower-left (N - M) x M block of A}--it

makes the slow modes purer. Note that at each refinement step the orthonor-

mality condition is always satisfied. These two steps may be performed singly,

or in tandem in any order, or recursively any number of times--provided the

most current v_ is used always. This refinement procedure is mathematical-

ly equivalent to that presented in Lam and Goussis [10], the difference being

that in this formulation the slow basis vectors are not involved. If the time

derivative terms in (6.17a) and (6.185) were omitted, the procedure would be

identical to the so-called Mises Power Method for finding eigen-vectors asso-

ciated with the largest eigen-values (See Carnahan, Luther and Wilkes[15]).

In essence, by allowing mode mixing among the fast modes, CSP extends the

Mises Power Method to compute the next iterant for the fast basis vectors.

Since the time scales of the fast modes are all faster than the current time

scale, the time derivative terms are always small corrections.

In practice, the first guess of the trial basis vectors is usually time-

independent. The subsequent refined sets will in general be time-dependent

because they are, by construction, y-dependent. In any case, their time

derivatives can be evaluated accordingly. In a computer program, these time

derivatives can be evaluated approximately using either stored or predicted

data already available in the integration routine. Such programming issues,

however, are beyond the scope of this paper.
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6.7 The Fast Subspace Projection Matrix

We can form a N x N matrix Q(M) as follows:

M

Q(M) - _ arab m, (6.19)
vct_l

and call it the .fast subspace projection matrix. When evaluated with refined

basis vectors, it will be denoted by Qo°(M).

Any column vector u or row vector v can be decomposed into its fast and

slow components using either Q(M), Qo(M) or Qo°(/). Using Q°(M), we
obtain:

u = Uo°"t"'t(M) + u°'°'°wt;t4'_o,-'-,, (6.20a)

v = Vo°"t'_"t(M) + v°"t°'_(M), (6.20b)

where

uO'l"a(M) -- Qo°(M)®u, (6.21a)

uO'°t°W(M) - (I-qo°(M))®u, (6.21b)

v°Ja°t(M) = v ® Q°(M), (6.21c)

Vo°"l°_'(/) - v ®(I-Qo°(/)). (6.21d)

We can decompose Q(M) into its M components:

M

Q(M) = y]_ Q,,,,
m=l

(6.22)

where

Qm-a-_ bin, m=l,2,...,M.

We shall call Q,, the fast mode projection matrix of the m-th mode.

The radical pointer of the m-th mode, Qm(i), is given by[12]:

(6.23)

Qm(i) - the i-th diagonal element of q,_, i = 1, 2,..., N. (6.24)

Note that Qm(i) is dimensionless, and its sum over all N components is 1.0.

Geometrically, Qm(k) is a measure of the projection of the k-th unit vector
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in the m-th mode. Hence, whenever Qm(k) is not a small number, species k

is said to be a CSP rwdical.

The fast reaction pointer of the m-th mode, Pro(r), is given by:

P,,(r) =_ (st) -1 ® Qm ® st, r = 1,2,...,R, (6.25)

which is a dimensionless number nominally of order unity. Here, (s,) -1 is a

set of row vectors orthonormal to the s, set of (linearly independent) column

vectors. Physically, Pm (r) is a measure of the projection of the r-th stoichio-

metric vector in the m-th mode. Whenever P_(r) is not a small number, the

r-th reaction is said to be a fast reaction.

6.8 The Main CSP Results

Using the available refined basis vectors, the original system of ODE's be-

comes:

_ _o,,to,_, ,,, (6.26)d.._y_y_ gO,f_,t( M ) + go L,:v,),
dt

where

and

R

o M v', o,fastr.rg°'la"(M) = Qo( ) ®g=2_,So,, a-

R
o m

= _-_ am f: ,
r--1

M

sO,f_,, qo(M) ® s, = _ ° '_o_r _ 0 art_ BO, r ,

rn_ l

R

f_" = b_o ® g= __Bo,_F _, m=l,2,...,M,
r_l

Bo._ = b_ ®s,, m=l,2,...,M,

(6.27a)

(6.27b)

r = 1,2,...,R, (6.27c)

(6.27d)

(6.27e)

R

g°"t°_(M) (I qo(M))° @ g = _ o,ao_-.r
r----1

M
o o Tr_

%,,_o,o,o_= (I- Qo(M))®s. = s. - __.a,.Bo,.,
m=l

r = 1,2,...,R.

(6.28a)

(6.28b)
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We shall call s °'°t°'_ and so,p,,t the effective stoichiometric vectors of the r-th
--OPT --0_

reaction.

The unrefined fast mode amplitude f" satisfies:

dfm M

d'-[-= _w'_(f'_- f_o), m = 1,2,...,M, (6.29)
rt----1

where

= (b" - b_) ® g = f" - ]_' (6.303)
R

= -b_ ® y_s,"t°'_--_r, m=l,2,...,M, (6.30b)
r=l

and w_ in (6.29) and s_t°'_ in (6.30b) are evaluated using the trial basis

vectors. Equation (6.29) is the generalized version of (5.93).

Treating (6.29) as a linear equation for f", we can express its solution as

the sum of a homogeneous solution and a particular solution:

(6.31)

We shall assume that the eigen-values of w_ are essentially negative (i.e.

the fast modes are of the boundary-layer type). The homogeneous solution

is responsible for satisfying the initial conditions, and for boundary-layer

type problems it becomes exponentially small in time measured in units of

r(M). The total adjustment of y in this brief time period can be given

approximately by:

M

(Ay)r c = - _ [am'r_(M)(f"- f_)lt=0,
W'ttn_l

(6.32)

derived under the ad hoc assumption that a,,r_'(M) is approximately time-

independent. Equation (6.32) is called the radical correction by Lam [12]. For

large time (t >> [r(M)D, f_ "--* ]_,rt.. The asymptotic solution for f_'_t.

can be shown to be:

" _ m=l 2, M.f;,,_t. = 1_0 + r_'(M dt + "'" ' ""'
rt_-I

(6.33)
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If gl..st evaluated with S m _ f_rt. is considered negligible in comparison

to g,lO,, according to some user-specified criterion, the following simplified
model is obtained:

dy goO,°tO_(M)_7 = " (6.34)
The "initial" conditions for (6.34) at t = 0 + must satisfy the following ap-

proximate equations of state:

R

fo_ = b_' ® g = __,B_F" ,_ O, m = l,2,...,M. (6.35)
r=l

The radical correction algorithm can be used to enforce this condition as

shall be demonstrated later. Note that (6.34) provides N ODE's for the N

unknowns, and its solutions are guaranteed to satisfy (6.35) for all t > 0 +

automatically provided (6.35) is satisfied initially and all fast eigen-values of

J are essentially negative.

7 The CSP Method on the Example

We shall step through the example numerically using CSP.

7.1 Choosing the Trial Basis Vectors

We assume that at the beginning we have no idea which reaction is fast. The

eigen-values $(i) and eigen-vectors of J at t = 0 can be computed numerically.
We have:

)_(1) = -1.27 x 102/second, (7.1a)
_(2) = -0.173 / second, (7.1b)
A(3) - O.O0/second, (7.1c)

indicating that there is a fast mode with time scale of the order of 10 -_

seconds, followed by a slower mode with time scale of the order of about 101

seconds. The right (column) eigen-vectors cti and left (row) eigen-vectors _i,

ranked in order of decreasing speed, are:

cq = [-1.90, 0.993, 1.87 x 10'] T, (7.2a)

a2 = [-0.960, -2.46 x 10 -2 , -0.901 × 10s] T, (7.2b)

,_3 = [o.ooo, 0.000, 1.001T, (7.2c)
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and

,81 = [-2.46 x 10-2, 0.960, 0.00], (7.3a)

,82 = [-0.993, -1.90, 0.000], (7.3b)

,83 = [-0.890 x l0 s , -1.89 x l0 s , 1.00]. (7.3c)

These may be used as our time-independent trial basis vectors for t >_ 0 but

they diagonalize A_. only at t = 0. Since our time resolution of interest is in

seconds, only the first mode can be considered fast. Hence, M = 1.

Alternatively, we can use the stoichiometric vectors of the three reactions

as our trial basis vectors (i.e. the default set in §6.2). Since they are time-

independent, A_ is easily computed:

-1.16x102 -1.13x102 2.23><102 '_A_ = -1.12 x 101 -I.ii x i01 2.21 x 101 ) . (7.4)0.216 x 10-2 0.208 x 10-2 -0.408 x 10-2

This matrix has significant off-diagonal terms for all t. Nevertheless, its

diagonal elements can be used to estimate the time scales of the modes, and

they indicate that mode #1 (i.e. reaction #1) is fastest and its time scale is

possibly below the time resolution of interest--suggesting that M = 1.

In what follows, we shall take M = 1 and choose (6.5a) and (6.6a) as our

trial fast basis vectors for t > 0:

al = [-2.00, 1.00, 1.10 x 104] T, (7.5a)

b' = [-9.00 x 101, -1.90 x 102, 1.00 x 10-z]. (7.5b)

Using these trial basis vectors, the N elements of the radical pointer of mode

#1 are (taking advantage of the fact that H # 0):

Q,(I)=1.80x10 :, Ql(2)=-1.90x 10 :, Q_(3)=-I.10×10'. (7.6)

Radical pointers computed using trial basis vectors are theoretically unre-

liable, and this result should be ignored. We shall compute a theoretically

reliable radical pointer for mode #1 using the refined basis vectors later. The

R elements of the fast reaction pointer of mode #1 are, as expected:

P_(1) = 1.00, P,(2) - 0.00, P,(3) = 0.00. (7.7)

confirming that reaction #I is the fast reaction of the trim fast basis vectors.
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7.2 Skipping the Rapid Transient Period

Since we are not interested in the rapid transient period which lasts tens of

milli-seconds, the main issue now is to find the adjusted initial conditions for

the simplified model which governs the slow evolutionary period.

In the rapid transient period, y adjusts rapidly in such a way that the

amplitude of the fastest mode approaches zero. This adjustment can be

computed approximately by the radical correction given by (6.32). For the

example here, the amplitude of the fastest mode at t = 0 is fl = F 1 =

2.14 x 10 -4. Making the radical correction using the trial fast basis vectors,

we obtain the following adjusted initial condition at t = 0+:

y(0 +)=y(0)TAyrc=[1.46 x 10-4, 1.95x 10 -6 , 300.021 T, (7.8)

which yields a much smaller amplitude, fl = F 1 = -1.36 x 10 -7. Note that

the relative magnitude of the correction to B is much larger than those to A

and C.

7.3 The CSP Refinement

Using the trial fast basis vectors (7.5a) and (7.5b), we can decompose g into

its fast and slow components:

gfast + g,tO_, (7.9a)g

where

g fast :

gSlOW =

q(1) ® g = [2.68 × 10 -6, -1.34 x 10 -7, -1.47 x 10-2] T, (7.9b)

(I-Q(1)) ® g = [6.87 x 10-6,-6.90 x 10-6,-0.667] r. (7.9c)

In general glaSt is of the "same order" as g,tO_, (component by component),

and its neglect will cause an order unity error since it was computed using

the trial fast basis vector

The refined fast basis

which has never been refined.

vectors at t - 0 + are:

a_ = [-1.92, 1.00, 1.88 x 1041T, (7.10a)

b_ = [-2.52x10 -2, 0.950, 0.000], (7.10b)

with to°(1) = (bo_ ® J ® a_) -1 = --0.788 x 10 -2 seconds. Note that a_ and

blo axe quite close to c_1 and ill, the right and left eigen-vectors of the fastest

mode. Note also that b 1 and blo bear no resemblance to each other.



Appendix IV 127

Using the above refined basis vectors for t > 0 +, the new A_ is:

i,o ( -1.27 × 102 -2.56 x 10 -1 7.70 x 10 -1 /
Aj,o = 1.03 -1.65 x 10 -1 4.95 x 10 -1 .

)3.68 x 10 -2 9.25 x 10 -4 -2.78 x 10 -a
(7.11)

Note that the off-diagonal terms are much smaller than before.

The elements of the new radical pointer using the refined basis vectors of

mode #1 are:

Q:,l(1)=0.482x10 -1, Qo°1(2)=0.952, Q_,1(3)=0.00. (7.12)

This (refined) radical pointer is theoretically reliable, and it indicates that B

alone is qualified to be a CSP radical, and that C must never be so identified.

The elements of the new fast reaction pointer are:

P_,(1) =0.906, P_,,(2)=0.941 x 10-', P_1(3)=3.58 x 10 -s, (7.13)

again confirming that reaction #1 is the fast reaction.

We can fine tune the initial conditions using the refined basis vectors and

apply the radical correction once more. We obtain:

y(0 +) = [1.46 x 10-'mole/cc, 1.89 x 10-Smole/cc, 300.02°K] T. (7.14)

This correction is mainly on B, the CSP radical. It is applied again here

because (7.8) was computed using the unrefined trial basis vectors and was

only a rough correction. It is possible not to use the radical correction if one

is willing to numerically integrate the original system of ODE's including

g_,J_st and let the rapid transient do the adjustments.

We can now compute the fast and slow components of g at t = 0+:

g_,1_.t = qoo(1) ® g

-- [1.24x i0-s,-6.52 x 10-6,-0.128]T,

go°'°t°_ = (I- Q:(1)) ® g

= [-5.89 x 10 -_, -1.61 x 10 -7, -0.555] v.

(7.15a)

(7.15b)

Equation (7.15a) must be interpreted with care---it should not be used to

assess whether gl_Ot can be neglected in comparison with g.tO,_. The proper
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order of magnitude estimate of gO,p,,t should be made with fo_ ,_ f_,_v,,t, as

mentioned earlier. The large time asymptotic approximation to the (refined)

particular solution is:

M dr_"m,o .,
f:,_,,.t. "_ f'o,_ + __, r;,,o (lvl)-----_ +..., m = 1,2,..., M,

n=l

(7.16)

where

f_,_ -- %, (M)--_-, n = 1,2,...,M, (7.17)
n----1

and f_ was previously defined in (6.30a). In a computer code, f_,_ can be

properly evaluated--the time derivative in (7.16) and (7.17) can be computed

either exactly or approximately (e.g. using backward finite difference). A

rough estimate of the order of magnitude of the exhausted amplitude foTM is:

r°o(M)

fo_ _ f[,,% _..O(rg(M + 1))f_, m= 1,2,...M,
(7.18)

where rO(M) and rO(M + 1) are the time scales of the slowest fast mode and

the fastest slow mode, respectively, rO(M) can be estimated by the largest

reciprocal diagonal element of a A_ refined at least once. rO(M + 1) can be

similarly estimated, or it can be taken to be the integration step size selected

by an integration routine (e.g. RKQC[161). Hence, we have:

M M r°(M) m-

= o " .o( ¥ 1))f21a,,,f;
m=l m=l T°-_

(7.19)

For the example, we have to°(1) _ 0.8 x 10 -2, to°(2) _ 0.6 x 101, and f_

6.63 × 10 -6. Hence, this rough estimate yields:

go°'f°'t _ O([-1.6 x 10-s, 0.8 x 10 -s, 1.6 x 10-4IT). (7.20)

If all of its components are considered small enough (see next section), we

can declare the refined fast mode exhausted--inspite of (7.15a) which does

not appear negligible at all--and neglect g°o'l'_st in comparison to go°''t°'° to

yield the desired simplified model.

For our example, the amplitude of the exhausted mode #1 is:

= B 1 F 1 1 2 , 3 (7.21)flo blo ® g= o,, + BoaF + Bo,3 F"
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Neglecting fo_ in comparison to the magnitude of the largest positive or

negative terms on the right hand side, we have:

R

__, B_,,.(F_. - F__) _ O, (7.22a)
r=l

or

R

B lo,,F" _ 0. (7.22b)
r----1

Either is a semi-analytical equation of state--the coefficients B_,o are provid-

ed only numerically (at t = 0+):

Bokl = blo ® S1 -- 1.00, (7.23a)

B_, 2 = b_ ® s2 = 0.975, (7.23b)

Bok3 = b'o ® s3 = -1.92. (7.23c)

The terms on the left-hand side of (7.22a) are nearly balanced, and the dom-

inant terms can easily be identified by the participation indez[121--showing

correctly that F_ _ F 1 .

Equation (7.22a) can be used to solve for B, the identified CSP radical,

thus eliminating the need for its ODE. Equation (7.22b) can be use to solve

for F ', the identified fast reaction, in terms of F 2 and F3:

F' = -0.975F 2 + 1.92F 3, (7.24)

which should be compared with (5.1), (5.5) and (5.10), the analytical results

valid in the limit kl ---* cx) obtained earlier. See §8 for additional comments.

We can now compute for _r°''l°w"
O0

R

g:,.,ow_ __o,.,o_.._. 0,.,o_._1 _o,aow._2 _o,o,o_._3 (7.25)-- _o,r r = So, 1 F _ _o,2 F _ 80, 2 F ,

r----1

where, at t = 0 +, we have:

o,ao_ _ [-0.916,-0.250 x I0-',-0.863 x 10s]T x i0-'$o,1 --

o,,to,_ = [0.859, 0.234 × 10-1,0.809 × 10s] TSo,2

o.,_o,0 = [-2.67, -0.728 x 10-',-2.52 x 10s] TSo,3

(7.26a)

(7.26b)

(7.26c)
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and

F _ = -0.975F 2 + 1.92F a, (7.27a)

F 2 = -6.76 x 10-6mole/cc-second, (7.27b)

F a = 2.61 × 10-Smole/cc-second. (7.27c)

Which slow reaction(s) (F 2 or F 3 or both) is controlling -°"t°_go can easily be

identified by the importance index introduced in Lam [121.

The above numerical -o,_°"t°"'-" derived for the given problem should be

compared with (5.1), (5.3a) and (5.3c), the analytical results obtained earlier.

In the kl --* cx_ limit, the CSP-derived analytical results are:

[s°'"°'_ = tO, O, O]T (7.28a)
o,1 lkl -*oo

[sO,°zo_l K1 2A AH2 - AH1 K1 + 2A. T
o,2 Jkl-._o - [K1 +4A' IQ +4A' K_ +_] ' (7.28b)

o,,to,,, -3K1 -6A AHa "H 2(Ka + A)]T. (7.28c)
so,a Jkl--.oo -- [KI + 4A' K1 + 4A' - zx 1 /-_2_]_

7.4 The User-speclfied Accuracy Threshold

A perceptive reader would have noticed in (7.20) that the error introduced

to/3, the CSP radical, by the neglect of go°Ja't would be the largest. This

pessimistic error estimate can be improved by using the radical correction [12].

It can easily be shown that when go°J"°t is neglected and the initial

conditions properly adjusted, the solution generated automatically satisfies

fm _ 0, m - 1,2,...,M. The theory of CSP uses the radical pointer to

identify one or more unknowns as CSP radicals for each exhausted fast mod-

e. The resulting M equations of state can be used to eliminate the ODE's

of the M CSP radicals--using the radical correction. Hence, the accuracy

of the CSP radical is controlled by the equations of state, and not by the

ODE's. A detailed discussion of this subtle point is beyond the scope of this

paper. It suffices to state that the error committed in neglecting gO,lo,* can

be estimated in the conventional way for all other unknowns, but for the

CSP radicals the correct estimate is a factor r(M)/r(M + 1) smaller than

indicated when the radical correction is used.

With this caveat, the error of neglecting gO,l.,_ can be computationally

assessed, and fast modes are declared exhausted only when their neglect in-

troduces an error estimated to be below the user-specified accuracy threshold,
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Y_rror. The exhaustion criterion [121 for the m-th fast mode is:

[°a,_f:,oo r( M) << Y,r,o_, m = 1,2,...,M,

which must be satisfied component by component.

(7.29)

7.5 Exact or Approximate Conservation Laws

In a time period of interest, some reaction modes may be so slow that they

can be considered dormant--they can be neglected.

Let the (N-M)-dimensional slow subspace be spanned by aa and b J, J =

M + 1,...,N, the slow trial set which complements the fast trial set of

basis vectors. The refinement process described earlier will refine these basis

vectors to weaken the coupling between the fast and slow modes. However,

within the fast and slow subspaces, the modes are mixed.

One may look for dormant modes among the N-M slow modes using any

reasonable algorithm. If the amplitude fog of the K-th (slow) mode satisfies,

component by component:

[a°KfKr(M + 1)1 << Y_,_o,, (selected K's), (7.30)

then it is considered a dormant mode.

Exact dormant modes occur frequently in chemical kinetics problems--

they are called conservation laws of atomic species. Generations of students

have been taught to look for such conservation laws and to use them to

advantage in analysis. From the CSP point of view, all exact conservation

laws are simply special cases of dormant modes. However, not all dormant

modes represent conservation laws.

Dormant modes play no significant role in CSP--inclusion of dormant

modes does not cause stiffness. Identification of dormant modes is of interest

primarily because they may suggest physically interesting concepts. CSP

provides no special technique to find them; we shall assume that they can be

somehow found and be identified using (7.30).

Unlike exhausted fast modes, the relation

foK = by q) g _-, 0, (selected K's), (7.31)

does not produce an equation of state. In the case of conservation law of

atomic species, for example, bE q) g = 0 is an identity: zero equals to zero.
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However, if bff can be expressed in the form:

br° - OOg,o (selected K's), (7.32)
= OK,o -_y ,

where ON,o and OK,o are scalar functions of y, then mode #K indeed may

represent a conservation law. Lam [12] called such Og,o'S eligible conserved

scalars, and such modes holonomic modes--a name borrowed from classical

mechanics [17]. At the present time, there is no known method to deter-

mine whether a computed slow bog is holonomic-- except when it is a time-

independent constant. All exhausted fast modes are approximately holonom-

ic, with 0m,o = 1 and Om,o _ f_'.

Whenever a holonomic ff is dormant, OK,o becomes a conserved scalar

which is an algebraic relation among the unknowns. Unlike equations of

state obtained from exhausted fast modes, conserved scalars always contain

a free parameter determined by initial conditions. For addition discussion,

see Lam [12].

In our example, (7.27c) shows that F 3 is quite small in comparison to

F 2. This observation by no means implies that F 3 _ 0--it only means
o,MowL-_3

that _o,3 r can be neglected from (7.25) in this time period. To find the
dormant mode, we may use (Sl, s2, txa) as our trial basis vectors. The

slow mode #3 will be found to be a dormant mode, with a_ = [0, 0, 1]T and

boa = [-0.890 × 105,-1.89 x 105,1.00]. The row vector boa will be found

numerically to be nearly constant in time, and analytically it can be shown

that:

bao ._ [AH, - AH2,AHa - 2AH2, 11(1 + O(kaKa/k,K_)). (7.33)

In other words, this is approximately an holonomic mode, with 0a,o = 1 and

03,0 = b 3 ® y _ (AH1 - AH2)A -I- (AH, - 2AH2)B -t- C, (7.34)

which can be interpreted as the total energy of the system. Theoretically, O3,o

evolves with time scale of O(H/(AH3kaK3)) which is measured in hundreds

of seconds; it only appears to be a conserved scalar quantity in the time

period of O(1/(k2K2) which is measured in seconds.
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8 A Stiffness-Related Programming Issue

The Associative Law of Addition is one of the fundamental laws of algebra.

It states that:

(x + y) + z = x + (y + z). (8.1)

It is not generally appreciated that this law is not valid on a finite precision

computer. One can easily confirm this observation by trying x = 1015, y =

-1015, and z = 1.23 on a hand calculator.
The numerical violation of the Associative Law of Addition is caused

by loss of significant figures in subtracting large numbers or adding large

and small numbers. In a chemical kinetics problem involving fast and slow

reactions, the evaluation of the vector g indeed involves subtraction and

addition of large and small numbers. Hence one must pay special attention

to the evaluation of g inside a computer program.

Mathematically, g can in principle be evaluated by any of the following

formally identical expressions:

g :----

g :---_

g :--

where f_ is given by (6.27d):

R

y_s_F _, (8.2a)
r----1

R R

s_F; - y_ s_F_ _, (8.2b1
r=l r=l

M

y_ a_, fo_ + go°'''°_, (8.2c )
r-----1

R

fo_ := _,Bo,"_F _, m= 1,2,...,M, (8.2d)
r=l

and

R

go°"'°_(M) := _-°'°'°_'_So,_r , (8.2e)
r_-I

r _ := F_-F_ _, r=l,2,...,R. (8.2f)

For sufficiently stiff problems, all three evaluations are numerically unrehable.

However, (8.2c) can be made reliable by applying CSP concepts as shall be

shown presently.
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The amount of cancellation in the evaluation of f_' and F r can be mea-

sured by:

[f_[ , m = 1,2, M, (8.3a)gfY = R m _ "'"
+ [B;?,,F21)

_fF" = IF I r = 1,2,...,R, (8.3b)
IF;I + IF:l'

which are both dimensionless numbers. Clearly, when either _f_ or _F _ is

very small, the accuracy of f_ or F" so evaluated is suspect. In our example,

/if 1 and /iF 1 are O(k2K2/(klK:)) after the rapid transient period, and--

to dramatize the situation--if k2K2/(klK1) = O(10 -is) then even double-

precision arithmetic would be inadequate.

CSP uses (8.2c), but intelligently. When f_ is near exhaustion, CSP

provides its leading order asymptotic approximation, (6.33). Since f_¢ is a

known function of y, the needed time derivative can be appropriately eval-

uated. Hence, whenever f_' has inadequate significant figures as evaluated

by (8.2d), (6.33) can be used in its place. In fact, it is recommended that

f_¢o be used (instead of fo_) to assess whether the m-th mode should be de-
clared exhausted. In other words, CSP properly recognizes the contribution

of go°J_°t to g in (8.2c) to be at best a minor correction whenever substantial

cancellation occurs in the direct evaluation of fy.

Similarly, in the evaluation of ,,o,slo_ all Fr'se,o , are involved. The values

of the exhausted fast _F*'s will be very small, and the corresponding values

of the F"s will be suspect. The theory of CSP provides M fast reaction

pointers to identify M fast reactions, and their net reaction rates can be

solved for from (8.2d) in terms of the rest of the net reaction rates. Hence,

the use of potentially inaccurate fast F*'s are avoided. In our example,

the value of F 1 after the rapid transient periods should not be computed

from F 1 = kl(A 2 - K1B), the theoretically exact expression, but should
CB 1 F 2 _ 3 1be evaluated from F 1 _ -_ °,2 + Bo,3F )/Bo, 1 instead, the CSP-derived

approximation.

The computation of the effective stoichiometric vector of the r-th reaction,

sO,"o" involves [I- Qo°(M)], and its dimensionless diagonal elements are
O_r

obtained by a subtraction process which may lose significant figures. The

following artifice has been found successful in eliminating specious errors

in the direct evaluation of s °'a°'_" Whenever any diagonal element of this
--O_r
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matrix falls below an appropriate threshold (e.9. 10 -4 for four significant

figures calculations), it is replaced by a zero.

9 Discussion

The traditional role of a theoretician has always been to simplify seemingly

complex problems into their bare elements. Physical insights and intuition

are at the root of this process, helped considerably by the methodology of

asymptotics when a small parameter is available and can be identified. As a

practical matter, asymptotic solutions usually consists of very few terms--

the so-called leading order solution is usually all that could be expected

because of the massive amount of algebra involved. In §5, the analytical

results obtained are formally correct only in the limit of k2K2/(klK1)

O, k3/(klK_) _ O. No assurance of accuracy is provided when applied to

problems with k2K2/(klK1) _ 0.1.

The theory of CSP welcomes physical insights and experience, but is not

dependent on them. It uses the eigen-values of J to order the trial modes,

and provides a refinement procedure to improve the decoupling of the trial

fast and slow subspaces. From the viewpoint of CSP, users of conventional

asymptotics simply make educated guesses at the fast basis vectors. The

special procedures to apply the partial-equilibrium and quasi-steady approx-

imations are just variants of the CSP refinement procedure. In the absence

of insights and experience, the conventional methodology cannot get started

at all, but CSP can proceed routinely--the eigen-vectors of J can always be

used as the trial set [181. Most importantly, the refinement procedure can be

recursively applied, allowing "higher-order" corrections to be included. The

CSP user has the responsibility to specify the threshold of tolerable error

Y_,ro,, and CSP makes sure that the error introduced by the neglect of g_jast

is below threshold. Different simplified models will be generated for different

user-specified y,,,o,; a lenient threshold will yield a simpler model than a

more stringent one.

The method of CSP is a significant advance over the method of matched

asymptotic ezpansions _191 for boundary-layer type problems. First of all, it

can be applied without the need of non-dimensionalizations and identification

of small parameters. In essence, CSP exploits the disparity of time scales be-

tween the exhausted fast modes and the currently active slower modes, and
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the small dimensionless parameter being exploited is _M defined in (6.13).

The simplified model is constructed by an iterative procedure; each itera-

tion improves the accuracy of the model by O(_M). It is important to note

that the time derivative term in (6.17a) and (6.18b) must be included in the

refinement procedures if accuracy beyond "leading order" is desired. The

superiority of the CSP approach to the conventional methodology, when ap-

plied analytically to simple problems, is clearly demonstrated in §7.3. For

massively complex problems, the CSP approach has no peers.

The CSP-derived simplified model remains a system of NODE's which is

accompanied by a set of M equations of state. Theoretically, the solutions of

the simplified model automatically satisfy the M equations of state for t > 0+

if the initial conditions satisfy them at t = 0+--assuming that exhausted

modes did not become active again. CSP uses all NODE's to march forward

in time for all N components of y, and uses the M equations of state only to

apply the radical corrections to prevent the "drifting" of the exhausted fast

mode amplitudes.

For each fast mode, CSP provides a radical pointer which identifies the

CSP radicals---species which can be solved for from the equation of state. It

is extremely important to note that one may not arbitrarily select any M

species to be solved for from the M algebraic equations. In the conventional

approach, the algebraic difficulty of solving for the radicals frequently forces

additional ad hoc approximations. CSP deals with this obstacle again using

iteration; the programmable radical correction procedure can be recursively

applied to solve for the CSP radicals. In fact, the radical correction should be

applied after every integration step to counter the usually larger estimated

error of neglecting gO,last for the CSP radicals. The refined basis vectors

from the previous time step can be used as trial basis vectors for the current

time step. In addition, CSP provides a fast reaction pointer for each fast

mode, and an algorithm to accurately evaluate the amplitudes of exhausted

fast reactions.

The CSP method has no difficulty in identifying dormant modes, but does

not provide a method for finding the so-called eligible conserved scalars--

except for the simplest case when the row basis vector of the mode in question

is found to be time-independent. At the present time, CSP does not take

advantage of any conservation laws which may be available.

Trevino et. al.I20],[211 successfully studied ignition phenomena with the

assistance of CSP data. CSP data can also be used to assess sensitivity of so-
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lutions with respect to the input rate coefficients 1221, and offers an attractive

alternative to the conventional method of sensitivity analysis [231.

After mode #2 also becomes exhausted, it can be shown by conventional

methodology that A and B become time-independent, but C varies linearly

with time when HF 3 _ O. The CSP method routinely obtains the simplified

model in this period with M = 2, and the exercise is left to the interested

readers.
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